[Back to Number 1 ToC] [Back to Journal Contents] [Back to Biokhimiya Home page]
[View Full Article] [Download Reprint (PDF)]

REVIEW: Conversion of Death Signal into Survival Signal by Redox Signaling

D. K. Das* and N. Maulik

Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA; fax: (860) 679-4606; E-mail: ddas@neuron.uchc.edu

* To whom correspondence should be addressed.

Received April 30, 2003
Reperfusion of ischemic myocardium produces reactive oxygen species (ROS) and results in apoptotic cell death and DNA fragmentation. Several redox-sensitive anti- and pro- apoptotic transcription factors including nuclear factor kappaB (NF-kappaB) and heterodimeric transcription factor AP-1 progressively and steadily increase in the heart as a function of the duration of ischemia and reperfusion. When the heart is adapted to ischemic stress by repeated short-term ischemia and reperfusion, NF-kappaB remains high, while AP-1 is lowered to almost baseline value. The anti-apoptotic gene Bcl-2 is downregulated in the ischemic/reperfused heart, while it is upregulated in the adapted myocardium. Cardioprotective abilities of the adapted myocardium are abolished when heart is pre-perfused with N-acetyl cysteine to scavenge ROS, suggesting a role of redox signaling. Mammalian heart is protected by several defense systems, which include, among others, the redox-regulated protein thioredoxin. Reperfusion of ischemic myocardium results in the downregulation of thioredoxin 1 (Trx 1) expression, which was upregulated in the adapted myocardium. The increased expression of Trx 1 is completely blocked with an inhibitor of Trx 1, cis-diammine-dichloroplatinum, which also abolished cardioprotection afforded by ischemic adaptation. The cardioprotective role of Trx 1 is further confirmed with transgenic mouse hearts overexpressing Trx 1. The Trx 1 mouse hearts displayed significantly improved post-ischemic ventricular recovery and reduced myocardial infarct size and apoptosis compared to the corresponding wild-type mouse hearts. The results of this study implicate a crucial role of redox signaling in transmitting anti-death signal.
KEY WORDS: apoptosis, ischemia/reperfusion, adaptation, survival signal, redox signaling