QM/MM Model Study on Properties and Structure of Some Antibiotics in Gas Phase: **Comparison of Energy and NMR Chemical Shift**

M. Monajjemi^{1*}, M. Heshmata², and H. H. Haeria³

¹Science and Research Branch, Islamic Azad University, P.O. Box: 14515-775, Tehran, Iran; E-mail: m monajjemi@yahoo.com ²Islamshahr Branch, Islamic Azad University Tehran, Iran ³Tehran Shargh Branch (ghyamdasht), Islamic Azad University, Tehran, Iran

> Received January 9, 2005 Revision received April 18, 2005

Abstract—The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods has become an alternative tool for many applications for which pure QM and MM are not suitable. The QM/MM method has been used for different types of problems, for example: structural biology, surface phenomena, and liquid phase. In this paper, we have used these methods for antibiotics and then we compared results. The calculations were done by the full *ab initio* method (HF/3-21g) and the (HF/STO-3G) and QM/MM (ONIOM) method with HF (3-21G)/AM1/UFF and HF (STO-3G)/AM1/UFF. We found the geometry obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming *ab initio* methods for large molecules. Comparison of energy values in the QM/MM and QM methods is given. In the present work, we compare chemical shifts and conclude that the QM/MM method is a perturbed full QM method. The work has been done on penicillin, streptomycin, benzyl penicillin, neomycin, kanamycin, gentamicin, and amoxicillin.

DOI: 10.1134/S0006297906130190

Key words: quantum mechanics, molecular mechanics, ab initio calculations, antibiotics

Various computational approaches have strengths and weaknesses. Dramatic progress has been made in the field of computational chemistry in recent years. Molecular mechanics can model very large compounds rapidly. Quantum mechanics is able to compute many properties and model chemical reactions. Of course, QM/MM approaches are different and depend on the methods used for calculations in the QM and MM regions. However there are many other attributes characterizing the various published methods. Chemical systems of interest in computational biology and reaction catalysis are occasionally systems in condensed phase that consist of thousands of participating atoms.

The combination of quantum and molecular mechanics gives very rapid results where only one part of the molecule needs to be modeled quantum mechanically. Today, it is well accepted that the QM method is the ultimate computational tool that can be used successfully

S113

in studying the structural aspects of a molecule and a variety of its physical and chemical properties.

Using these calculations energy, bond lengths, bond angles, the strongest bonds, estimation of the active site of a molecule, recognition of reaction mechanism in the body, type of penetration in living cells, and also the presence of antibiotic drug residues in food products of animal origin that has potential health hazard to consumers can be obtained. For example, sulfonamide residues in some species have been a problem for about 10-12 years. Such studies are widespread for biological systems, especially enzymes [1-8].

In this study, the QM/MM method is focused on antibiotics [4]. The geometries and NMR shielding tensors have been calculated. The calculated values from both methods (QM and QM/MM) were compared and the results were very close together except in time consumption. For example, optimization times for the largest molecules in this study-kanamycin, streptomycin, and gentamicin—are given in Table 1.

^{*} To whom correspondence should be addressed.

A	Time consumption, sec		
Antibiotic	QM	QM/MM	
Kanamycin	15659	344	
Streptomycin	38441	125	
Gentamicin	8374	24	

 Table 1. Comparison of time consumption for the three largest antibiotics

METHODS OF INVESTIGATION

Computational details. The GAUSSIAN 98 software package [9] is used to perform Hartree-Fock (HF) and DFT calculations, B3LYP and LSDA, on the antibiotics. The semiempirical calculation is based on the AM1 method and because we use the Gaussian 98 program we must take UFF force field for the molecular mechanic part. Hybrid QM/MM runs were performed as implemented before in the ONIOM method. In many respects, the issues governing implementation of OM/MM computer codes are similar to those associated with the individual QM and MM methods. Most of the coupling terms are readily computed using the machinery present in either the QM or MM packages. However, it is worthwhile to give brief consideration to a couple of implementation issues. Given that the starting point is working QM and MM codes, QM/MM implementations can be considered to fall into three groups [10].

I. Those based on classical modeling packages with a QM code integrated as a force field extension 3.

II. Those based on a QM package incorporating the MM environment as a perturbation.

III. Modular schemes in which a central control program is provided and a choice of both QM and MM methods is left open.

Methodology. On the basis of the ONIOM method, we divided every molecule into three parts (L, M, and H) and then optimized each point. This method cannot optimize some molecules because of having a double bond or aromatic ring in the link part. The link bonds are a critical aspect of the QM/MM method. Usually, we use a dummy atom to complete the QM subsystem. We must note that the link part should always be in the form of $C_{\alpha}-C_{\beta}$ for two subsystems QM/MM. In fact, the relation between the link part and MM or QM subsystems must be through one atom. The QM/MM boundary should not cut across double, triple, or aromatic bonds as [11]. Thus, one link atom can only be bonded to one QM atom. But the reverse situation is allowed; this means that two link atoms are bonded with one QM atom.

The separation of the partial atomic driving force is described as follows. In the ONIOM calculation of the total energy, $E_{ONIOM}^{REAL}(R_1...R_N;r_{m+1},r_{m+2})$ is approximated by:

$$\boldsymbol{E}_{\text{ONIOM}}^{\text{REAL}}(\mathbf{R}_{1}...\mathbf{R}_{N};\mathbf{r}_{m+1},\mathbf{r}_{m+2}) = \boldsymbol{E}_{\text{MM}}^{\text{REAL}}(\mathbf{R}_{1}...\mathbf{R}_{N}) +$$

+
$$E_{\text{QM}}^{\text{MODEL}}(\mathbf{r}_{1}...\mathbf{r}_{m}, \mathbf{r}_{m+1}, \mathbf{r}_{m+2}) - E_{\text{MM}}^{\text{MODEL}}(\mathbf{r}_{1}...\mathbf{r}_{m}, \mathbf{r}_{m+1}, \mathbf{r}_{m+2}),$$

where the REAL system consists of N atoms at R_i (i = 1, 2...N) and the MODEL system consists of (m+2) atoms at r_i (j = 1, 2...m+1, m+2) [12].

RESULTS AND DISCUSSION

According to [12], $E_{ONIOM}^{REAL}(R_1...R_N; r_{m+1}, r_{m+2})$ is the total ONIOM optimized energy for each antibiotic, $R_1...R_N$ are the coordinates for each atom (1...N) of the molecules, and r_{m+1}, r_{m+2} are the coordinates for link atoms. $E_{MM}^{REAL}(R_1...R_N)$ is the total MM optimized energy for R_1 to R_N . $E_{QM}^{MODEL}(r_1...r_m, r_{m+1}, r_{m+2})$ is the total QM optimized energy for the medium region and link atoms and $E_{MM}^{MODEL}(r_1...r_m, r_{m+1}, r_{m+2})$ is the total MM optimized energy for the medium region and link atoms [10].

In the present work, we compare the result from pure quantum mechanical (*ab initio*) calculation of a molecule and the QM/MM results. The calculations were performed using the GAUSSIAN 98 software package [9]. We conclude that these two data groups are in good agreement. Then we can use the QM/MM method for recognizing the active site of antibiotic molecules and mechanism of their reactions in the body. In all test examples the results of QM/MM calculations were compared to the corresponding results of full quantum chemical study. The optimized geometries are summarized in Table 2.

In ab initio quantum chemistry, analytical derivative theories have made possible the calculations of many important molecular properties. It should be pointed out that a direct comparison of the QM/MM predictions to the experimental data available for the same molecular system is complicated by the fact that the empirical parameterization contained in the MM force fields is partly responsible either for excellent agreement (maybe due to successful cancellation of errors) or serious disagreement between two sets of values. In the ONIOM method that we use in this work, particle exchanges between high-level and 4 low-level subsystems do not disturb the statistical ensemble. NMR shielding tensors (ppm) have been computed with the continuous set of the gauge independent atomic orbital (GIAO) method [13-16]. The δ values for isotropy and anisotropy are shown in Figs. 1-4.

As we see in NMR isotropy and anisotropy for all of the molecules (Table 3), in the high region of calculations a similar trend is obtained for the QM and QM/MM methods [17-19]. In the medium and low regions (semiempirical and molecular mechanic parts) some perturbations were observed in the form of the following equations:

Method	QM(HF/STO-3G)			QM/MM(C	NIOM/AM	[1/STO-3G) ^b			
Antibiotic									
	Bond le	ength	Ang	le	Torsior	1	Bond length	Angle	Torsion
Gentamicin	R(1,2) R(1,3) R(2,6) R(2,7) R(2,5)	1.4872 1.0325 1.5539 1.0924 1.5539	$\begin{array}{c} A(2,1,3) \\ A(3,1,4) \\ A(1,2,6) \\ A(1,2,7) \\ A(1,2,5) \\ A(5,2,7) \end{array}$	107.5508 105.5441 114.2216 108.3453 108.0114 107.6574	D(3,1,2,5) D(3,1,2,6) D(4,1,2,5)	165.8139 43.2751 52.6942	1.4658(H) 1.0335(H) 1.1252(M) 1.1209(M) 1.5471(L)	106.2177 107.2584 107.5106 112.6706 110.7801 110.5552	166.3004 48.1602 82.9067
Streptomycin	R(1,2) R(3,7) R(5,10) R(6,11) R(15,21) R(11,16)	$\begin{array}{c} 1.2166 \\ 1.4305 \\ 1.5414 \\ 1.4345 \\ 1.4349 \\ 1.4356 \end{array}$	A(1,2,3) A(2,3,5) A(6,11,16) A(18,20,10) A(5,10,18) A(18,10,19)	124.0378 111.4762 115.9816 109.1552 110.1679 108.9361	$\begin{array}{c} D(1,2,3,5)\\ D(4,2,3,5)\\ D(3,5,10,18)\\ D(9,5,10,18)\\ D(3,6,11,16)\\ D(3,5,10,19) \end{array}$	79.8769 99.9776 54.9853 63.4836 156.032 65.1125	1.2167(H) 1.4318(H) 1.5406(M) 1.395(M) 1.3974(L) 1.3985(L)	124.2261 111.6398 113.6157 109.013 110.2323 108.9551	96.5851 83.4827 56.3064 61.033 167.5119 64.0679
Neomycin	R(1,2) R(8,18) R(15,22) R(26,21) R(21,25)	1.4517 1.0042 1.4458 1.0036 1.0031	A(1,3,9) A(8,4,12) A(6,15,22) A(15,6,16) A(13,21,28) A(25,22,26)	108.7298 113.7329 119.5938 110.9605 110.5331 111.425	$\begin{array}{c} D(3,1,2,6)\\ D(9,3,7,13)\\ D(15,6,13,7)\\ D(1,2,6,15)\\ D(13,6,15,22)\\ D(2,6,15,22) \end{array}$	63.7036 171.9786 74.0331 62.4017 170.5782 67.3999	1.4454(H) 1.0032(H) 1.4003(M) 0.9835(L) 0.9782(L)	109.2582 113.971 113.3632 113.437 90.7267 106.1211	66.9726 171.0443 74.1027 62.0783 161.1146 78.7944
Kanamycin ^c	R(30,24) R(1,2)	1.5606	A(27,23,28) A(3,1,4)	111.8316	D(23,27,30,24) D(3,1,2,6)	30.8579	1.564(H)	112.242	28.0366
	R(15,20) R(5,9)	1.4413	A(30,24,32) A(1,2,10)	110.255	D(5,29,30,24) D(1,2,8,14)	63.4242	1.4864(H)	108.069	65.6426
	R(5,12) R(4,12)	1.0874	A(33,30,12) A(1,4,12)	1005.6652	D(33,30,24,12) D(2,1,4,12)	175.92	0.9905(M)	104.4232	173.9484
	R(9,7) R(13,21)	1.5606	A(9,7,14) A(13,21,25)	111.5099	D(23,9,7,14) D(6,13,21,25)	107.4849	1.3896(L)	114.4554	106.2713
	R(9,23) R(6,13)	1.4382	A(9,23,31) A(6,13,7)	112.3972	D(27,31,9,23) D(3,7,13,6)	18.5384	1.4471(L)	113.0142	21.8729
			QM(HF/3-21G)		QM/MM(ONIOM/AM1/3-21G) ^b			
Penicillin N	R(1,2) R(1,4) R(2,7) R(5,9) R(13,17) R(20,22)	1.4747 1.0063 1.0851 1.2015 1.5149 1.4228	$\begin{array}{c} A(2,1,3) \\ A(7,3,6) \\ A(2,5,9) \\ A(6,2,7) \\ A(1,2,6) \\ A(5,2,6) \end{array}$	114.4312 11.041 122.9126 109.034 115.5248 109.9593	D(3,1,2,6) D(1,2,3,7) D(6,7,2,8)	92.1826 150.3452 57.426	1.4367(H) 1.0031(H) 1.1287(M) 1.2314(M) 1.5087(L) 2.9728(L)	116.1293 116.7761 129.1952 109.4599 112.268 108.2868	76.4889 162.0065 88.3912
Amoxicillin	R(6,13) R(12,14) R(26,23) R(14,23) R(31,27) R(32,37)	1.5291 1.5479 1.0015 1.4271 1.085 1.3807	A(6,9,16) A(20,13,22) A(23,14,24) A(14,23,26) A(25,23,26)	111.5394 108.7822 112.3918 116.7758 113.7447	$\begin{array}{c} D(6,3,5,11)\\ D(9,6,13,20)\\ D(5,11,14,23)\\ D(11,14,23,26)\\ D(12,14,23,25)\\ D(11,14,23,25) \end{array}$	$\begin{array}{c} 2.008\\ 52.9199\\ 127.8987\\ 32.5251\\ 104.612\\ 156.3674 \end{array}$	1.5287(H) 1.587(H) 0.9978(M) 1.3968(M) 1.1123(L) 1.35023(L)	111.5615 108.7355 112.0165 112.1836 114.9898	$\begin{array}{c} 1.1556\\ 52.7142\\ 125.1758\\ 75.1656\\ 163.8114\\ 64.7453\end{array}$
Penicillin B	R(1,2) R(3,8) R(12,15) R(12,14) R(12,13)	1.3816 1.0718 1.0815 1.0813 1.5194	A(2,1,3) A(5,2,7) A(9,12,14) A(14,12,15) A(13,12,15) A(9,12,13)	119.7149 119.721 110.5186 108.6868 105.9928 110.5651	$\begin{array}{c} D(3,1,2,5)\\ D(2,1,3,8)\\ D(5,9,12,14)\\ D(3,6,9,12)\\ D(5,9,12,13)\\ D(6,9,12,13) \end{array}$	0.1162 179.8691 8.1616 178.7708 49.4916 49.4916	1.3833(H) 1.0721(H) 1.1251(M) 1.1207(M) 1.5158(L)	119.7313 119.8091 110.7938 106.3989 109.2112 113.9004	0.4789 179.7936 15.0563 179.897 137.7132 43.5595

Table 2.	Geometric	data	com	parison ^a
Incle II	ocometiie	unu	00111	parison

^a Bond length in Angstroms and angles in degrees. ^b H, M, and L are related to the level of calculation.

^c After optimization, the atom number is different in each method, so we wrote the equal positions. The upper is the nomenclature in QM and the lower in QM/MM.

0 5 10

-50

-150

Fig. 1. Calculated NMR isotropy by QM and QM/MM methods for amoxicillin (1), neomycin (2), and gentamicin (3).

20 25

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

15

Number of atoms

35 40 45 50 55

30

Fig. 2. Calculated NMR isotropy by QM and QM/MM methods for penicillin N (1), streptomycin (2), benzyl-penicillin (3), and kanamycin (4).

Fig. 3. Calculated NMR anisotropy by QM and QM/MM methods for amoxicillin (1), neomycin (2), and gentamicin (3).

Fig. 4. Calculated NMR anisotropy by QM and QM/MM methods for penicillin N (1), streptomycin (2), benzyl-penicillin (3), and kanamycin (4).

Antibiotic			QM		QM/MM			
Atom		Isotropy, ppm	Anisotropy, ppm	Etha	Isotropy, ppm	Anisotropy, ppm	Etha	
Penicillin N	N1	259.4764	-25.5084	1.8270	270.2220	-16.7483	0.4395	
	09	-70.6660	405.3953	-2.7435	180.7549	-50.1697	3.1016	
	O10	199.3262	180.6477	0.2525	-97.5844	-27.3620	19.4987	
	N20	-193.8844	37.8635	4.7432	-296.7816	393.7661	-2.1899	
	O21	-55.9257	-265.0861	1.0835	190.3148	35.1709	1.8894	
	N27	151.0595	114.8195	-0.4008	163.7063	57.6385	-0.1721	
Gentamicin	N1	289.1194	26.5275	0.7262	295.1335	9.5498	3.0687	
	08	379.6643	-35.4001	1.1547	376.6949	38.9611	0.5754	
	O16	361.1793	-35.4001	4.5864	369.2707	28.9016	-4.0937	
	N17	288.9021	-11.2733	0.3245	285.8393	7.0689	0.2027	
	O20	371.8920	13.4852	2.3133	357.3987	-49.1711	2.0225	
	022	376.2995	44.0402	-1.6170	372.5392	-6.1402	-2.6378	
Benzyl-penicillin	N16	192.6588	-46.6411	-3.8537	165.1936	45.8629	-3.4013	
	017	-84.0312	-358.3685	-0.4442	-130.0047	-342.1075	-0.6910	
	N23	140.9620	81.8637	0.5216	161.8641	62.8843	-1.1014	
	S24	530.2199	71.0631	2.5934	599.1027	168.3297	0.5887	
	025	-94.7227	385.2121	-2.2951	-251.1780	399.4710	-2.2297	
	033	-71.2745	-395.3331	-0.1769	-83.8716	-467.6284	-0.3328	
Streptomycin	01	-342.9533	999.0713	-0.1075	-397.7195	625.9290	1.8667	
	07	365.6820	21.0208	-1.7953	321.9443	15.0629	-0.2348	
	09	352.6940	51.4798	-0.8995	262.1071	88.8769	-1.0542	
	011	384.8125	46.2513	1.3498	334.5991	6.2631	3.4802	
	N29	292.1538	11.8455	-6.3965	250.6474	3.4802	-11.9742	
	N35	273.3409	14.4431	-6.1816	219.4225	-15.5077	-0.4228	
Kanamycin	N1	243.7632	-6.9787	-11.2623	245.7689	16.4824	-0.9714	
	O10	307.8146	31.4294	2.7652	345.2533	37.3437	-0.5195	
	N14	247.7343	-6.7450	10.8454	238.5792	4.3886	-2.3674	
	017	313.0080	-27.7770	-4.4375	313.6998	40.4003	0.0917	
	O20	301.7441	43.3493	0.6071	300.9153	-274.7366	0.5328	
	O21	305.1157	-264.7204	5.7175	336.7489	19.1721	3.4834	
Neomycin	02	312.9844	-0.1071	164.8151	310.2457	-1.7443	11.4925	
	N8	271.3593	0.8879	18.6109	271.2868	0.4523	-1.1814	
	09	341.8986	14.9862	3.2249	341.7557	19.4749	1.7089	
	O14	346.0949	-32.9642	-0.2783	343.0432	-371.4624	-0.7607	
	015	312.6415	13.8043	0.1013	316.8814	16.4403	-0.1819	
	N21	265.0583	-14.8125	0.4772	269.2565	22.6116	-0.3636	
Amoxicilin	01	-72.5490	109.0002	-2.1979	-70.6113	325.1847	-2.4406	
	04	191.2364	-117.3046	-0.2730	190.7483	-154.5213	1.6302	
	N5	149.7623	125.5613	0.2812	151.8711	64.9583	-2.0875	
	S10	543.9982	53.0307	5.8038	535.3778	165.8745	10.6828	
	015	-88.6107	209.0251	-3.2990	-98.3273	-406.6466	0.1350	
	N23	193.4785	23.2478	9.5392	32.0677	123.5060	-0.5070	

Table 3. Comparison between resulting QM and QM/MM isotropy, anisotropy, and chemical shift anisotropy asymmetry (Etha)

QM/MM MODEL STUDY OF SOME ANTIBIOTICS IN GAS PHASE

Table 4. Optimized structure of different antibiotics with their energies (Hartree) by QM and QM/MM methods

Structure				
Amoxycilin		QM / 3-21G		
H(30)	HF	B3LYP	LSDA	
$\begin{array}{c} H_{1}^{(H_{1},H_{2})} - c(T) \\ H_{1}^{(3)} - c(T) \\ H_{1}^{(3)} - c(G) \\ H_{1}^{(3)} \\ c(1) \\ H_{2}^{(4)} \\ c(2) \ o(c(3) \\ H_{2}^{(4)} \\ c(9) \\ \end{array}$	-1543.7406662	1551.3320605	-1544.2061673	
M(3) H(36) c(10) C(12)18(14) H(35) C(10(17)) QMpart O(13)	QM/MM / 3-21G			
$\begin{array}{c} H(19) \\ H(39) \\ H(38) \\ H(38) \\ H(41) \\ C(21) \\ C(20) \end{array}$	HF	B3LYP	LSDA	
$\begin{array}{c} c_{(23)} - c_{(24)} \\ c_{(22)} - c_{(24)} \\ H(42) \\ c_{(24)} \\ H(42) \\ c_{(24)} \\ c_{(24)} \\ c_{(25)} \\ H(44) \end{array}$	-1543.7051903	-1551.3007558	-1544.1770218	

Gentamicin	QM / 3-21G			
H(57) H(62) H(57) 0(27)	HF	B3LYP	LSDA	
$\begin{array}{c} H_{(55)} \\ H_{(67)} \\ H_{(55)} \\ H_{(66)} \\ \hline \\ H_{(70)} \\ \hline \\ H_{(71)} \\ \hline \\ H_{(71)} \\ \hline \\ H_{(72)} \\ \hline \\ H_{(71)} \\ \hline \\ \hline \\ H_{(71)} \\ \hline \\ H_{(71)$	1698.4550694	-1708.5923462	-1699.8719074	
$\begin{array}{c} & H(63) \\ O(31) \\ H(69) \\ H(71) \\ H(71) \\ H(42) \\ H(43) \\ H(43)$	QM/MM / 3-21G			
$\begin{array}{c} \begin{array}{c} & & \\ H(60) \\ \end{array} \\ H(60) \\ \end{array} \\ \begin{array}{c} C(1) \\ O(21) \\ \end{array} \\ \begin{array}{c} C(177) \\ H(30) \\ H(30) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \begin{array}{c} C(2) \\ H(34) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C(2) \\ C(2) \\ C(2) \\ C(2) \\ \end{array} \\ \end{array} \\ \end{array} \\ C(2) \\ C(2) \\ C(2) \\ C(2) \\ C(2) \\ \end{array} \\ \\ C(2) \\ C(2)$	HF	B3LYP	LSDA	
$H_{(45)}$ $H_{(41)}$ $H_{(39)}$ $H_{(36)}$ $H_{(36)}$ $H_{(36)}$ $H_{(41)}$ $H_{(41)}$	-1698.3845529	-1708.5163471	-1699.7991278	

	Neomycin		QM / 3-21G	
	H(47)	HF	B3LYP	LSDA
QM part	$\begin{array}{c} H(40) \\ H(39)_{H(41)6} \\ (c_{117}) \\ c_{141} \\ (c_{141}) \\ $	-1130.2036684	-1136.9499716	-1131.1477236
	$\begin{array}{c} H(37) \\ H(42) \\ C(13) \\ H(26) \\ H(38) \\ O(11) \\ \end{array}$		QM/MM / 3-21G	
H(26)	$\begin{array}{c} H(23) \\ H(33) \rightarrow O(10) \\ C(1) \\ C(2) \\ C(3) \\ H(32) \\ C(5) \\ H(22) \\ H(22) \\ H(22) \\ H(21) \\ H(21) \\ H(21) \\ H(22) \\ H(21) \\ H(2$	HF	B3LYP	LSDA
H(31) H(29) H(7) H(29)	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	-1130.1302393	-1136.8790582	-1131.0697881
	Streptomycin		QM / 3-21G	
	N(37)	HF	B3LYP	LSDA
0(34)	$\begin{array}{c} N(36)^{-C(32)} & N(38) \\ N(24) & O(30) \\ C(28) & C(16) \\ C(22) & N(39) \end{array}$	-2086.8245071	-2099.1499472	-2088.4760577
C(125) C(125) C(18) C(18) C(26)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		OM 404 /2 21C	
Ō(14)	O(10) -C(5) -C(5)		QM/MM / 3-21G	

HF	B3LYP	LSDA				
-2086.7109075	-2099.0036450	-2088.3046473				

	N(24)	ບເລບາ
	\	C(35)N(40
C(28)	cj16)c	/ N(39) 22)
) _C(19) 0(27)	/ ~~	C(29)
251 N(20)	,0(23)	
C(15)		/
	ι (17)	C(21)
(18) 0(33)	7	\
C(26) C(12)		0(31)
0(14)	C(7)	
0(10)		
	0(8)	
	$\begin{pmatrix} 1 & 0(1) \\ 0(2) & 0(1) \\ 0(2) & 0(1) \\ 0(2) & 0(1) \\ 0(2) & 0(1) \\ 0(2) & 0(1) \\ 0(2) & 0(2) \\ 0$	
QM part		
0	(6)	
	C(9)	

QM / 3-21G					
HF	B3LYP	LSDA			
-1414.5848985	-1421.4993239	-1414.9987423			

QM/MM / 3-21G				
HF	B3LYP	LSDA		
-1414.5251216	-1421.4516870	-1414.9622243		

Benzyl penicillin

$$H_{eff} = H_{qm}^{0} + H_{mm} + H_{qm/mm}^{elec} + H_{qm/mm}^{vdW} , \qquad (1)$$

where

$$H_{qm\,mm}^{vdW} = \sum_{s=1}^{S} \sum_{m=1}^{M} 4\varepsilon_{sm} \left[\left(\frac{\sigma_{sm}}{R_{sm}} \right)^{12} - \left(\frac{\sigma_{sm}}{R_{sm}} \right)^{6} \right], \qquad (2)$$

where *s* is the number of atoms in the MM part and *m* the number of atoms in the QM part. The σ_{sm} and ε_{sm} are experimental parameters;

$$E_{qm/mm} = \left\langle \Psi \middle| H_{qm/mm} \middle| \Psi \right\rangle + E_{qm/mm}^{vdW} , \qquad (3)$$

$$H_{qm'mm}^{elec} = \sum_{s=1}^{S} \sum_{m=1}^{M} \frac{q_s Z_m}{R_{sm}} , \qquad (4)$$

where q_s is atomic charge on MM atom, Z_m is atomic charge on QM atom, and R_{sm} is the distances between particles. In the MM region, we use total strain energy in the form of:

$$E_{Total} = \Sigma (Eb + E\theta + E\varphi + Enb + E\varepsilon + Ehb + E\delta + ...).$$
(5)

In this part of the calculations two dummy atoms (H) are entered in the molecule and the chemical environment of atoms differ with the primary structure. In the full *ab initio* method, the hydrogen and carbon atoms have similar chemical environment and their chemical shifts are approximately uniform. Therefore, simply we can see the effect of isolation of parts in NMR spectra. Usually the heavy atoms that contain electron pairs have high δ values and display peaks.

The energy values for some different *ab initio* and DFT methods and the comparison between the QM and

BIOCHEMISTRY (Moscow) Vol. 71 Suppl. 1 2006

.9504374 -1551.4922398 -1544.4569103

QM/MM methods are given in Table 4. As observed geometrical values are very close in the two methods and where the *ab initio* calculations are not possible, for example, in molecules consisting of 100 or greater number of atoms, we can use QM/MM results with complete assurance.

This brief review of the QM/MM approach has emphasized the variety of ways that QM and MM calculations can be combined. As may be clear from the number of variations that are possible it will probably be difficult to get exactly the same answer 5 with two separate implementations and like the force fields themselves the methodology will gradually gain acceptance on the basis of experience.

The QM/MM model for describing biomolecules, while successful, still requires further development which will lead to a better integration of the QM and MM formalisms by solving the problem of the QM/MM boundary in a general way. Thus it is expected that both the development and the application of QM/MM method will continue to expand strongly in the current decade and that the information obtained from QM/MM calculations will be essential for a deep understanding of biochemical processes. A number of other systems are currently under study with the new QM/MM methods that have been developed recently in this group. Implementation of the algorithm to calculate NMR chemical shielding tensors in the QM/MM framework makes it possible to study the chemical shift of specific group in biomolecules.

REFERENCES

1. Hart, J. C., Burton, N. A., and Hillier, I. H. (1997) *Chem. Commun.*, 1431-1432.

- 2. Haiyan Liu, Yingkai Zhang, and Weitao Yang (2000) J. Am. Chem. Soc., **122**, 6560-6570.
- 3. Vreven, T., Morokuma, K., and Frisch, M. J. (2003) *J. Comp. Chem.*, **24**, 760-769.
- 4. Gherman, B. F., Goldberg, S. D., Cornish, V. W., and Friesner, R. A. (2004) *J. Am. Chem. Soc.*, **126**, 7652-7664.
- Gascon, J. A., and Batista, V. S. (2003) Dep. Chem. Yale University, P.O. Box 208107, New Haven, CT 06520-8107 (December 8, 2003).
- 6. Remko, M., van Duijnen, P. Th., and Marcel (2003) *Struct. Chem.*, **14**, 271-278.
- 7. Roethlisberger, U., Vidossich, P., and Carloni, P. (2003) *Sci. Supercomput. Cineca*, DOI:10.1388/SSC (2003) 432-436.
- 8. Yamada, A., Ishikura, T., and Yamato, T. (2004) *Proteins: Structure, Function, Bioinformatics*, **55**, 1063-1069.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Brent, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L.,

Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A. (1998) *Gaussian 98, Revision A. 7*, Gaussian, Inc., Pittsburgh, PA.

- Sherwood, P. (2000) Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute for Computing, NIC Series, Vol. 3, pp. 285-305.
- 11. Scientific Computing and Modeling NV, Vrije Universiteit, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, ADF Program System Release, 2002.01.
- 12. Yamada, A., Ishikura, T., and Yamato, T. (2004) *Proteins: Structure, Function, and Bioinformatics*, **55**, 1070-1077.
- 13. Ditchfield, R. (1974) Mol. Phys., 27, 789.
- Cheesman, J. R., Frisch, M. J., Devlin, F. J., and Stephens, P. J. (1996) *Chem. Phys. Lett.*, **252**, 211.
- 15. MacWeeny, R. (1962) Phys. Rev., 126, 1028.
- 16. Wolinsky, K., Hilton, J. F., and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251.
- 17. Cui, Q., and Karplus, M. (2000) J. Phys. Chem. B, 104, 3721-3743.
- Molina, P. A., Sikorski, R. S., and Jensen, J. H. (2003) *Theor. Chem. Acc.*, **109**, 100-107.
- 19. Warshel, A., and Levitt, M. (1976) J. Mol. Biol., 103, 227.