[Back to Issue 6 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]
[View Full Article] [Download Reprint (PDF)]

REVIEW: The Green Alga Chlamydomonas reinhardtii as a Tool for in vivo Study of Site-Directed Mutations in PsbO Protein of Photosystem II


A. V. Pigolev* and V. V. Klimov

Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; fax: +7 (496) 733-0532; E-mail: alexey-pigolev@rambler.ru

* To whom correspondence should be addressed.

Received January 12, 2015; Revision received February 25, 2015
The photosynthetic water oxidation in photosystem II (PS II) takes place in a special water-oxidizing complex (WOC) that consists of a catalytic center, Mn4CaO5 cluster, and also includes a group of extrinsic proteins needed for its stability. The most important of these is PsbO, which binds to the donor side of PS II near the Mn cluster and is directly involved in the regulation of its stability and activity. However, the molecular mechanism of PsbO involvement in photosynthetic water oxidation remains unclear. One of the main approaches to solving this problem is site-directed mutagenesis. Until recently, the effect of mutations in PsbO in vivo has been studied only in cyanobacteria (prokaryotes). In eukaryotic organisms, such studies (site-directed mutagenesis of PsbO) have not been carried out, though it is known that the role of PsbO protein in plants and cyanobacteria may be different. In this review, we consider the possibility of using for this purpose the unicellular green alga Chlamydomonas reinhardtii, a eukaryotic organism with a set of extrinsic proteins of the WOC similar to that of the higher plants. However, in contrast to higher plants, the ΔpsbO mutant of C. reinhardtii is viable. Another reason to use this alga is that the ΔpsbO strain of C. reinhardtii grown in the dark (heterotrophically) is able to build the minimal photochemically active complex of PS II, allowing investigation of the role of individual amino acid substitutions in PsbO in vivo without damaging PS II due to photoinactivation.
KEY WORDS: photosystem II, water-oxidizing complex, PsbO protein, Chlamydomonas reinhardtii, site-directed mutagenesis

DOI: 10.1134/S0006297915060036