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Abstract—The review discusses differences beém the specific protein interactions with single- and double-stranded RNA
molecules using the data on the structure of RNA—protein mplexes. Proteins interacting with the single-stranded RNAs
form contacts with RNA bases, which ensures recognition of specific nucleotide sequencemdiion of such contacts with

the double-stranded RNAs is hindered, so that the proteins recognize unique conformations of the RNA spatial structure
and interact mainly with the RNA sugar-phosphate backbone.
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INTR ODUCTIO N fragments, bases are iolwed in the canplementary
interactions betveen the nucleotides, so that the ates of
RNA-binding proteins participate in many essential the paired bases beote unawailable for the interaction
cellular processes, such as translation regulation, RNAwith external partners. ssRNA fragments are, as a rule,
maturation, transport and localization, mMRNA splicing functionally active RNA regions (e.g.stem-loop strue
and degradationgetc. Studying structural properties of the tures with 3-8-nucleotide loop). In addition to the acces
RNA elements recognized by proteins, aselvas deci  sible single-stranded fragments, RNA molecules contain
phering structure of the specific RNA—protein complex-  multiple elements with an intricate spatial structures,
es facilitate elucidation of the mechanisms of thesesuch as three-ay junctions (canbination of three RNA
processes and, subsequentlyrovide means to control helices), bulges, pseudoknots, and others. Since most
them. Investigation of the RNA—protein canplexes has nucleotides in such elements form pairs, these RNA
started at the Institute of Protein Research more than 30regions are often called dsRNA. Dersity of the dsRNA
years with studies of structural and functional features oforganization has led to adaptation of the interacting pro
the camplexes of bacterial ribosoal proteins with frag teins to RNA spatial elements and emergence of unique
ments of ribosonal RNA [1-7]. features in the proteins specifically bindingatious RNA
The problem of classification of RNA—protein inter  structures.
actions has been repeatedly discussed in numerous publi
cations, starting fron the classic review by Drap€l8]

in1999 and continuing with the latest article on the STRUCTURAL MOTIFS

RNA—protein complexes by Corleyet al. [9]. RNA IN THE ssRNA-BINDIN G PROTEINS
regions specifically recognized by proteins can be single-

or double-stranded. In the single-stranded RNA (ssRNA) RNP domain poteins. Proteins with ribonucleopre

fragments, most nucleotides are not paired with thenge  tein (RNP) binding domain [RNA-binding domain
plementary bases and remain accessible for the interac(RBD) or RNA-recognition motif (RRM)] are the most
tion with proteins. In the double-stranded RNA (dsRNA) common ssRNA-binding proteins. At least 0.5-1.0% of
human genes contain nucleotide sequences coding for
AbbreviationsdsRBD, double-stranded RNA-binding danain; ~ RNP domains[10]. The RNP domain was identified for
dsRNA, double-stranded RNA; RNP ribonucleoprotein, the first time in the middle of 1980s by amparing the
ssRNA, single-stranded RNA. sequences of protein coponents of small nuclear RNPs
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(snRNPs)[11, 12]. The RNP damain contains tvo corn-
sened motifs: RNP1 coanposed of 8 mostly amatic or
positively charged residues (K/R-G-F/Y-G/A-F/Y-
I/L/IV-X-FIY) and RNP2 in the N-terminal fragment of
the protein, canposed of six amino acid residues (I/L/V-
F/Y-I/AL/V-X-N-L)  [13]. These tvo motifs are linked
by a sequence of appro¥0 amino acid residues. ofal
length of the RNP danain is 80-90a.a.; it is formed by a
four-stranded antiparalleb-sheet and tw helices located
at the same side of the-sheet. RNP1 is a part of th®3
strand, while RNP2 is a part of thé1 strand.

Resolving the structures of more than I@mplexes
of RNP domain proteins (RNP proteins) with RNA frag
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ewer, in all of them, theb-sheet plas the role of a “plat
form” that determines position of the bound RNA mole
cule, while the side chains of amino acids directed tand
RNA act as “hooks,” providing protein—RNA interac-
tions [23].

An important feature of RNP proteins is the pres
ence of segral danains (the so-called tandem duains)
for cooperative recognition of RNA moleculeg24]. In
this case, tw RNP domains connected by a short linker
interact with two consecutie RNA sequences. This strdac
tural organization allovs to expand the RNA-—protein
interface area and to increase protein affinity tawnd
sSRNA. Cooperatie ssRNA recognition by the tandem

ments has allowd to analyze the details of interaction RNP proteins was first obsemrd for the SxI protein, which
between these proteins and RNA and to elucidate thespecifically interacts with the UG sequencd?24]. The
principles of recognition of the related RNA first nucleotidesof the sequence (UGU) are recognized
sequence$13-15]. A typical example of such proteins is by the first RNP danain, while the following oligo(U)

U1A, which is a canponent of the snRNA U1 (one of the
five snRNAs forming the spliceosoe) [16, 17] (Fig. 1).
RNP proteins can bind ssRNA regions ofavying
length— from 2 (CBP20 [18,19], and nucleolin [20,21])
to 8 nucleotides (U2B¢22]). In most cases, three con

sened phenylalanine or tyrosine residues at positions 3

and 5 in the RNP1 and positior? in the RNP2 (Fig.1c)

sequence is recognized by the second RNPndn. In
this case, the fully unfolded ssRNA is recognized, which
distinguished SxI fran the majority of RNP proteins that
bind hairpin RNA structures with a short single-strand
region.

Analysis of the ssSRNA sequences ealed a relatig-

ly low selectivity of RNP proteins for them. & example,

form contacts with two RNA bases, thus generating a the RRM domain of the SRSF2 protein binds both the
continuous region of stacking interactions. Structural UCCAGU and UGG AGU sequences; moreeer, the GG
analysis has shown that, aside findfew exceptions, RNP pair interacts with the same protein fragment on the
proteins retain consemd consensus motifs [13]. How- sheet surface as the CC pdR4]. Therefore, RNP1 and

C
RNP1: [RK]-G-[FY]-[GAI-[FYI-[ILV]I-X-[FY]

2
RNP2: [ILVIHFY]-[ILV]-X-N-L

(5)

@ 5

\VAS
B+ P1 Bz P2

Fig. 1. Spatial organization of RNP proteins. aptructure of the U1A protein in a cmplex with the snRNA Il U1 hairpin (PDB 1URN).
Elements of the protein secondary structure an@ and 3tends of the RNA fragment used in crystallization are indicated. Hereaftiye 3D
structures vere generated based on the atocoordinates using the PyMol program. dRegion of the U1A protein interaction with the Ul
snRNA. Important amino acids inwlved in the interaction with the RNA bases via their side chains are show.ocation of RNP1 and RNP2
consensus sequences on theheet of the RNA-binding denain. Aromatic amino acid residues of the consensus sequences are shown in bold.
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Variable loop a C

Variable loop

Variable Variable GxxG
loop

GxxG loop

Fig. 2. Spatial organization of the KH dmain proteins. a)Secondary structure elements in the typgleft panel) and typell (right panel)
KH domains with the indicated protein core (@n) and additional elements @llow). b) Structure of the conplex of Nova-2 KH3 protein
(third domain of the mammalian Noa antigen fran the family of RNA metabolism regulators in neurons) with the harpin RNA (PDB
1EC6); RNA fragment A11-C15 and GxxG motif of the protein loop are shown. Begion of the Nova-2 KH3 protein interaction with the
RNA tetranucleotide U,,C;35A,,C15 (hydrogen bonds are shown with dashed lines).

RNP provide structural basis for the protein interaction KH domain poteins. The second most cmmon
with the single-stranded regions of RNA molecules, while ssSRNA-binding motif after the RNP danain is the KH
specific RNA sequences are recognized by the proteirdomain [heterogeneous nuclear ribonucleoproteirk
terminal regions or by the partner proteins. It is o8 (hnRNP K) homology damain], which is approximately
monly believed that RNP1 and RNP2 are the “LEGO 70 a.a. long and contains the [N/]-I-G-X-X-G-X-X-
blocks” for formation of the ssRNA-binding proteins [IL V] motif in its central part[26]. The KH domain is a
functioning in tandem with other proteing13, 15]. two-layer protein structure with a three-strandeb-sheet
Specific features of RNP proteins can be found in and threea-helices at its side that can form twdifferent
the published review (e.g.,[25]) and databases of classi spatial structures. Eukatic (KH domain type ) and
fied protein families (Pfam PF00076, InterPro bacterial (KH domain type Il) proteins share a comon
IPR0O00504). minimal core baab supplemented with one-helix and

BIOCHEMIS TRY (Moscow) Vl. 86 No. 8 2021
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one b-strand at the C-terminus (typel) or N-terminus
(type ). Therefore, topology of the eukargtic typel KH
domain ishaabba with antiparallelb-sheet, while topot
ogy of the bacterial typell KH do main is abbaab
(Fig. 2a).

Two a-helices of the protein central fragment are
linked by the consered GxxG loop in the KH damain
motif. Proteins with the KH damain-like spatial strue
ture, but lacking the GxxG motif, exhibit low affinity to
RNA, but can modulate the RNA-binding activity of
other proteins[27]. It is beliewed that the glgine residues
of the GxxG loop are located ery close to the atms of
the RNA sugar-phosphate backbone, and their substitu
tion with other amino acids might create steric hin
drances for the protein contacts with the RNA. Structural
organization of the KH damain proteins ensure that four
consecutie RNA bases are directed t@asd the protein
surface and form a netork of contacts with its amino
acids (Fig. 2, b and c). This specifically recognized

NIKULIN

side chain of the arginine residue in the centiaistrand.

If the second position is occupied by adenine, the argi
nine in the protein is replaced with more mobile lysine
residue. The base at the third position is specifically tec
ognized via formation of tw hydrogen bonds with the
amide and carbonyl groups of the peptide backbone of
one of the residues in the second (typ&H do main) or
third (type Il KH do main) b-strand. Both adenine and
cytosine in this position can form te hydrogen bonds
and are discriminated via formation of an additional
hydrogen bond with the atm in the side chain of one of
the a2-helix residueq29, 30].

It should be mentions that sme KH domain pro-
teins contain additional structural elements (e.gsignal
transduction and actiation of RNA fold (STAR)
protein [31] or NusA protein with the tandem
domains[32]) that promote protein affinity to RNA and
decrease dissociation constant of the protein-RNA B
plexes fran the micromolar to nanamolar range[33].

tetranucleotide usually contains pyrimidines at the first More detailed description of the structural properties of
and fourth positions and adenine or cytosine at the sec the KH domain proteins can be found in reviesf29, 34]

ond and third positiong28]. Cytosine at the second posi
tion is recognized due to formation of tw hydrogen
bonds betwen the O2 and N3 atms of the base and the

Fig. 3. Spatial organization of zinc finger proteins. a)is11d pre
tein in a canplex with the %UU AUUU AUU-3 ¢ RNA (PDB
1RGO). b) MML V protein in a canplex with a signaling RNA
(PDB 1U6P).

and protein databases (PfamPF00013, InterPro
IPR004088).

Protein with small epeated domain&inc finger pre
teins Another interesting example of the RNA-recogniz
ing motif is the zinc finger dmain. Zinc finger danains
were for the first time described as smaill30a.a.) DNA-
binding domains containing the [YF]-X-C-X-C-X(2,4)-
C-X(3)-F-X(5)-L-X(2)-H-X(3,4)-H-X(5) consen -
sus[35-37]. These proteins haw the bba topology with
two consered pairs of histidine and cysteine residues
binding a zinc ion that stabilizes the daain structure
(Fig. 3). Zinc finger damains bind in the major gree of
the double-stranded DNA helix, so that the atos of the
charged side chains form fllyogen bonds with the DNA
bases. Zinc ion is not inMved in the protein interaction
with DNA,; its main role is stabilization of the dmain
structure.

Later, it was found that sme RNA-binding proteins
also contain zinc finger dmains. Thus, the is11d pre
tein, which regulates mRNA stability by binding to the
class Il AU-rich element (ARE) in the ZFuntranslated
region (FUTR) of the target mMRNA and pramotes its
deadenylation and degradation [389], contains two zinc
finger damains with C-X(8)-C-X(5)-C-X(3)-H (CCCH-
type) motifs. The nucleocapsid MMV (Moloney murine
leukemia virus) protein contains one zinc finger dwin
(Fig. 3) [40, 41]. Each zinc finger dmain of the Tis1ld
protein specifically recognized the single-stranded
UAUU sequence in the class Il AU-rich element (ARE)
in the 3¢untranslated region (UTR) of the target and pro
motes its deadenylation and degradation. In thisroplex,
four RNA bases are located in the pocket formed by each
domain and form stacking interactions with the side chain
of phenylalanine (fran the loop betveen the third cys
teine and the histidine residue of the zinc finger) and tyro

BIOCHEMIS TRY (Moscow) \l. 86 No. 8 2021
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Fig. 4. Structural organization of PUM danain proteins and TRAP a) Human Pumiliol PUM-HD protein in co mplex with the 10-
nucleotide ssRNA (PDB1M8Y). Right panel)details of protein—-RNA interaction with the in the region of contact with one of the repeats.
b) TRAP in a canplex with the 53-nucleotide ssRNA containing 1GAG triplets separated by the AU dinucleotides (shown surrounding the
protein) (PDB 1C9S). Typtophan molecules invlved in the RNA binding are located at the surface of the protein momer b-sheet. Right
panel) detailed view of the RNA—protein contact area; (recognized &5 triplets and AU spacers are indicated).

sine (fram the loop betveen the second and the third cys

Each PUF repeat consists of threa-helices that

teines of the zinc finger). Selectivity of this interaction is form a cuned structure. ssSRNA binds to the concav

provided by the contact beteen the atms of the RNA
bases and atuos of the zinc finger peptide backbone (with

inner part of the protein, so that each base is located
between the neighboring repeats, whereas the RNA

the only one exception, such as contact formation with sugar-phosphate backbone forms no contacts with the

the side chain of Glu157).

protein. Most nucleotides stack with the side chains of

The MMLYV protein is especially interesting, as it tyrosine and tryptophan residues, and ats of the

contains the minimal zinc finger dmain (termedknuck-
le) of the C-X(2)-C-X(3)-H-X(4)-C (CCHC) type
(Fig. 3b). Similar, to the Tis11d protein, MMLV protein

Watson—Crick base edge form ldyogen bonds with the
side chains of polar and charged amino acids of th2-
helices of each reped#2]. Interestingly uracil binds to

interacts with RNA via stacking of bases beten tyrosine glutamine and asparagine, while adenine binds to gluta
and tryptophan residues of the zinc fingers, but in thismine and cysteine and guanine interacts with glutamine
case, the atms of the bases form contacts mostly with theand serine. Substitution of these residues alters the-pro
side chains of amino acids. tein specificity to the sSRNA sequences [425, 46]. This
To summarize asilable data, zinc finger proteins is an extreme example of the principle of using of repeat
recognize RNA due to formation of hgrogen bonds ed damains for increasing protein affinity to RNA, as
between amino acid residues and RNA, but the major roleeach danain represents a PUF repeat that recognizes an

in these contacts belongs to the stacking interactiongndividual nucleotide.

between the side chains of ansatic residues and RNA
bases. The presence of seal zinc finger motifs increas
es protein affinity and specificity toard RNA; howewer,
these repeated duains exhibit no pronounced prefer
ence for DNA or RNA, which is a characteristic feature
of the zinc finger proteins.

Proteins with the PUM damains (PUF repeats).
Another example of small repeated dwins interacting
with the extended ssRNA tracts is the PUM-HD
(Pumilio-ho mology damain) named after the Pumilio
protein involved in the regulation ofbrosophilamatura
tion [42]. PUM-HD proteins bind to the 3¢UTRs in
MRNAs, thus regulating expression of multiple
gened43, 44]. Human Pumiliol PUM-HD protein con -
tains eight PUF repeats of 3@.a. each and the N- and C-
terminal sequences structurally similar to the PUF
repeats (Fig4a)[42].

BIOCHEMIS TRY (Moscow) Vl. 86 No. 8 2021

TRAP. TRAP (tryptophan RNA binding attenuation
protein) is another representates of the proteins with
large number of small RNA-binding dmains. In sane
bacilli, TRAP regulates expression of proteins ivived in
the synthesis of L-tryptophan. After binding free trypto
phan molecules, TRAP interacts with the TR of
mRNA and forms the terminator loop, resulting in the
transcription termination [47, 48].

TRAP is an entirelyb-structure protein (two-layer
antiparallel b-sandwich), 11 monaners of which form a
symmetrical ring-shape quaternary oaplex (Fig. 4b).
Tryptophan binds to TRAP beteen the tvo b-layers. In
the protein canplex with the 53-nt ssSRNA, each of the 11
GAGAU repeats interacts with one of the protein
monomers [47]. The GAG triplets are located beteen
the two neighboring monaners and interact with them,
while the AU dinucleotide acts as a spaceBpecific
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recognition of adening(A) and third guanine(G) in each
GAG triplet is ensured by a netwrk of hydrogen bonds,

NIKULIN

oligo(C) RNA, two cytidines bound to the region of the
b2- and b3-strands are ceered with theb1-b2 loop and

whereas the RNA sugar-phosphate backbone forms ndhe a4-helix on one side and th&2-b3 loop on the other

contacts with the protein atms, except the hgrogen

bond between the ZOH group of ribose and amide group
of Phe32. Apparentlythis contact is important for the
selectie binding of RNA, as affinity of TRAP to the

side [52]. The obsered contacts beteen the protein
amino acids and nucleotides suggests Rho protein speci
ficity toward cytidines. No bonds are formed bet&n the
ribose ZZOH group and protein, which is in agreement

DNA molecule with the same nucleotide sequence iswith the Rho ability to bind both RNA and DNA[52].

10,000 times lowr [49].
Proteins with OB fold domairnThe OB fold damain

Other OB fold damain proteins can bind both RNA
and DNA, for example, cold shock dmain (CSD) pro-

named due to its presence in the proteins capable ofeins (Pfam PF00313, InterPro IPR002059) [53-55],

oligonucleotide/aligosaccharidebinding represents -
barrel canposed of fie b-strands. The OB fold dmains
hawe been found in multiple proteins with different furc
tions and size (70-15@.a.) [50]. According to the SC®
structural classification, the OB fold is subdivided into
16 superfamilies, only one of which is named “nucleic
acid-binding proteins” (superfamily SC® 50249). The
OB fold does not determine the RNA-binding ability of
the protein molecule, but rather sees as a platform for
formation of proteins with such abilityas it represents a
rigid and stable structure resulting fro the tight packing
of the b-sheet.

A typical example of the RNA-binding protein frm
this family is theEscherichia coltranscription termina
tion factor Rho (Fig. 5) [51]. In solution, Rho monomer
consists of tw domains: smaller N-terminal RNA-bind-
ing domain and larger C-terminal APase donain. In
addition to the b-barrel (OB fold), the N-terminal
domain contains 47a.a. that form threea-helices at the
protein N-terminus. In the camplex of this danain with

CSD domain of the eukarptic YB-1 protein [56],
domains of bacterial S1 ribosoal proteins
(InterPro IPR000110), etc. OB folds are structurally
homologous to Sm folds (seleelow).

Sm fold poteins. The Sm fold wvas named after the
Sm proteins, conponents of eukargtic small nuclear
RNPs (snRNPs) [57]. Seen hamologous Sm proteins
(B/B¢ D, D, D4, E, F, and G) form the consergd part
of the spliceosme snRNP with segral uridine-rich
snRNAs [58-60]. Sm proteins consist of approx. &0a.
organized in a fie-strandedb-barrel with N-terminal a-
helix structurally hanologous to the OB fold (Fig56). In
the snRNP Sm proteins form a ring-like heteroheptamer
(similar to the Rho protein), but the ring is fully closed
and contacts betwen the neighboring protein monmers
are formed by the outeb-strands, and not by the adéli
tional C-terminal domains. It should be mentioned that
the Sm proteins form heptamers only in the presence of
snRNAs [58]. Eukaryotes besides contain the Lsm (like-
Sm) proteins hanologous to the Sm protein§61]. They

Fig. 5. Spatial structure of theE. coli hexameric transcription termination factor Rho in cmplex with short RNA and ADPPNP nucleotide
(PDB 1P\O). Right panel)Rho monomer with bound UC dinucleotide and ADPPNP (OB fold dmain is shown in the wal).

BIOCHEMIS TRY (Moscow) \l. 86 No. 8 2021
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Fig. 6. Structural organization of Sm/Lsm-proteins. aHuman minimal U1 snRNP. U1 snRNA is in the center of the heptamer; Sm proteins
are shown with different colors. b)east heteroheptameric Lsm1-7 coplex (PDB 4C92). c) Staphylococcus aurels$fq complex with
AU:G RNA (PDB 1KQ?2). d) E. coli Hfg complex with oligo(A) RNA (PDB 3GIB).

are canponents of RNPs inwlved in the maturation and Sm/Lsm proteins bind oligo(U) RNA in the oliganer
processing of mMRNAs and tRNAs, mRNA decapping, inner cavity fran the side of the monmer a-helices
and other processdg$2]. Lsm proteins can also oligoner-  (Fig. 6¢) [66]. Each uridine is located in the pocket
ize into heteroheptamers, but this assembly does noformed by tw neighboring monamners, while uracils form
require the presence of RNAG3]. stacks with the armatic side chains of amino acid residues
Homologues of eukamtic Sm/Lsm proteins hae of the b2-b3 andb4-b5 loops. Atans of the RNA bases
been found in archaea and bacteria. Bacterial Lsm pro form hydrogen bonds with the side chains of charged
teins are called Hfg and act as global regulator of genamino acids. Since the size of the inner cavity is small, not
expression [6465]. Archaeal Lsm proteins are named all protein monamers hae equal contact with the bases,
SmAPs (Sm archaeal proteins); their function in the cells due to sSRNA has to “enter” and “exit” the cmplex.

remains poorly understood [6165]. Both archaeal and Bacterial Hfq proteins also exhibit affinity toward
bacterial Lsm proteins form stable ring-like oligners oligo(A) RNA [67, 68], which binds to the Hfg hexamer
(homoheptamers and hmohexamers, respectaly). at the side opposite to the site of oligo(U) RNA binding

BIOCHEMIS TRY (Moscow) Vl. 86 No. 8 2021
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(Fig. 6d). Adenines located in the hdrophobic pocket PROTEINS INTERA CTIN G
stack with the armatic side chains and form tdrogen WITH DOUBLE-S TRANDED RNAs
bonds with the side chains of other amino acids. The-dis
tance betveen specifically bound nucleotides (adenines) Double-standed RNA-binding domain (dsRBDA
is greater than in the case of oligo(U) RNA binding. single consered structure called the double-stranded
Nucleotides located betwen them can interact with RNA-binding domain (dsRBD) is recognized in the pro
amino acid residue$§67] or can be exposed at the protein teins interacting with dsRNA [70,71]. It is the second
surface without forming specific contacts with the protein most canmon domain in the RNA-binding proteins after
atoms [69]. the RNP domain responsible for ssRNA binding. It is a
Sm/Lsm proteins illustrate the principle of dmain small damain (65-70 a.a.) canposed of three-stranded
repetition for increasing protein affinity towrd RNA, antiparallel b-sheet with the N- and C-terminal helices
more exactly toward its particular bases (uridine or ade located at one of its surfaces. dsRBDaw first identified
nine). Organization of the secondary structure elementsby canparing amino acid sequences of eukatic pro-
senes as a basis for generation of the stable multimeriteins with high specificity toard dsRNA, but low spegci
complexes that act as a single structure, while thasheet ficity to ssRNA and to any DNA. Substitutions in the
surface is not utilized for the interaction with RNA. The nucleotide sequence of dsRNA had no effect on the affin
regions inwlved in RNA recognition are located in the ity of dsRBD proteins tovard it [72].
protein pockets formed by the loops that link the ele One of such proteins is the second main of the
ments of the protein secondary structure. These region®RNA binding protein A from Xenopus laeviéXIrbpa-2),
include hydrophobic residues stacking with nucleotide which interacts  with  the 10-bp  dsRNA
bases, as@ll as charged/polar amino acids forming a rRet (GGCGCGCGCC) , via three regions (Fig7) [73]. The
work of hydrogen bonds with the atms of the bases. first (N-terminal a-helix) and the second §1-b2 loop)

Fig. 7. Structure of the Xlrbpa-2 caplex with dsRNA (PDB 1DI2). Two neighboring dodecamer dsRNA fragments (GGCGCGCGCC),
Xlrbpa-2 secondary structure elements, and regions of protein contacts with the dsDNA are shown. fBoftanel, proposed areas of
RNA-—protein contacts.
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Fig. 8. Structures of ribosmal protein canplexes with RNA. a)S8 fran Methanococcus jannaschii complex with 16S rRNA fragment
(PDB 116U); amnio acids residues forming contact with rRNA are indicated. BL5 fran Thermusthermophilusn complex with specific 16S
rRNA fragment (PDB 1DK1). 16S rRNA helices h21, h22, and h23 and S15 proteirhelices are indicated. Left panelyiew fram the S15
protein side; right panelthe same image turned by 90° around thertical axis.

regions form contacts with te fragments of the RNA

and over 50 proteins. rRNA has an intricate spatial struc

small groore separated by a helix turn. The third regionture capable of self-organizationin vitro. Ribosane

(C-terminal helix) interacts with a fragment of the RNA
major groove. In all three regions, protein residues con
tact with the atons of the RNA sugar-phosphate baeck
bone, mostly with the ribose ZOH group. Regular strue
ture of the dsRNA A-form minor groae is distorted in
the b1-b2 loop area (regior?); this distorted region con

assembly is a cooperag\vprocess that occurs via a strct
ly ordered series of ents after being initiated by the
interaction of ribosanal proteins with the specifically
recognized rRNA sequences. Protein binding to the
rRNA leads to canpaction of the formed RNP particles
and provides a platform for further association of other

tacts with the conserd histidine residue essential for the ribosamal proteins [75,76]. The primary binding ribose

protein interaction with the dsRNA. Interestingly the

mal proteins interact with rRNA independently on other

dsRNA binding to the protein depends not only on the ribosamal components. rRNA protein binding regions
amino acid residues forming direct contacts with the haw a ‘ery canplex spatial structurg77, 78]. The result

RNA molecule, but also on a number of lyophobic
residues that determine correct folding @f-helices and
appropriate orientation of charged residues imived in
the RNA binding [70].

ing complexes can be considered as protein-dsRNA
complexes. It should be noted that ste primary ribose
mal proteins regulate their own synthesis by interacting
with their own mRNA. Therefore, they can specifically

Analysis of the known structures of dsRBD proteins recognize two different RNA targets. Autoregulation of
in complexes with dsRNAs shosvthat all these proteins ribosamal protein biosynthesis is aevy interesting prob
form very few contacts with the RNA bases. Almost alllem in the studies of principles of RNA—protein recogni
protein interactions occur with the sugar-phosphate tion and discrimination betveen two RNA molecules by

backbone atms and ribose @0OH group, which is the
most significant difference beteen the dsRBD proteins
and ssRNA-recognizing proteins.

the same protein. Beloywe discuss three bacterial ribo
samal proteins that are primary ribosoal protein and
regulators of the bacterial operon translation. No such

Additional secondary structure elements, such as arstudies hag been performed for eukaoyic proteins. It

elongated N-terminala-helix or repeated dmains, can

should be mentioned that the new meenclature of the

be used to increase affinity of the dsRBD proteins toribosamal proteins vas introduced in 2014 to eliminate
dsRNAs [70,71, 74]. Newrtheless, in any case, dsRBD discrepancies in the naming of bacterial, archaeal, and
proteins interact with the sugar-phosphate backboneeukaryotic proteins[79], according to which the unier-

atoms, and not with the atms of bases in dsRNA.
Ribosomal poteins.Ribosamal proteins canprise an
interesting example of proteins recognizing ©wlex
RNA spatial structures. Ribosme is a macrmolecular
complex canposed of sesral ribosanal RNAs (rRNAS)
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sally consergd ribosanal proteins (i.e., found in the
organisms fron all three Kingdans) were designated with
prefix “u”, while the proteins typical for bacteria and
eukaryotes only are designated with prefixes “b” and “e”,
respectiely.
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Ribosamal protein uS8. The uniersally consersd
ribosamal protein uS8 (hereafterS8) is one of the riboso
mal proteins forming the platform of the small ribosaal

NIKULIN

tures of the protein-binding regions in RNA differ signif
icantly.
Ribosamal protein uS15. The unigrsally consered

subunit[80-84]. It is essential for the correct assembly ofribosamal protein uS15 (hereafteiS15) is inwlved in for

the 16S rRNA central dmain [81, 83, 85]. Mutations in
S8 result in the defect association of ribosnal subpar

mation of the platform of the small ribosmal subunit. It
is the first protein to attach to the 16S rRNA central

ticles in the full-size ribosme [86]. S8 protein binds to domain thus mediating subsequent binding of the ribeso
the fragment of the h21 helix in the 16S rRNA in the mal proteins S6, S18, S11, and S21 [80, 81, 95, 96].
region of nucleotides 595-598/640-644 [87-89]. S8 is alsoSimilarly to the S8 protein, S15 regulates transcription of
involved in the negatie feedback regulation of transcrp its own operon. When synthesized in excegsamounts,
tion of the spcoperon inE. coli[90, 91]. The structure of this protein binding to the corresponding mRNA and
the protein binding region in thespc mMRNA closely suppresses its own biosynthef#§-100].

resembles that of the protein-binding sequence inthe h21 ~ The ribosanal protein S15 is a small protein oo
helix of 16S rRNA, which initially gae rise to the idea of posed of foura-helices packed into a single dwain. S15
recognition based on the structurally similar elements ofbinds 16S rRNA in the region of the h20, h21, and h22

two RNAs [90, 92, 93].

The structure of the cmplex of S8 with a 16S rRNA
fragment demonstrated that tasprotein damains interact
with two neighboring fragments of the RNA minor
groove, while the protein forms a “bridge” ger the major
groove (Fig. 8a) [4]. The majority of amino acid residues
forming contacts with the rRNA are located in the pro
tein C-terminal domain and interact mostly with the
RNA sugar-phosphate backbone. Consen nucleotides

helices (Fig.8b) [83, 101]. Out of the tvo dozen amino
acid residues interacting with rRNA, only four are posi
tively charged, while most of the contacts are formed
between the polar side chains of the residues andnasaof
the rRNA sugar-phosphate backbone [95]. The protein
interacts with 16S rRNA in tw regions: in the area of
three-way junction between the 16S rRNA helices and
the GU/GC maotif of the ds-rRNA minor groove located
one turn fram the first region. An important feature of the

595-598/640-644 are responsible for the distortions in thefirst region is formation of the base triplet essential for-fix

dsRNA A-form by forming two nucleotide triplets linked

ation of the three-vay junction. This triplet directly or via

by hydrogen bonds. The same nucleotides form the S8-magnesium ion interacts with the side chains of amino

recognized interface on 16S rRNAd].
The structure ofE. coli S8 protein in complex with
the fragment of thespcoperon mMRNA re\ealed slight dif

acid residues frm the a3-helix. The neighboring
nucleotides interact with the residues of th&l-a2 loop.
Most of these contacts are formed with the sugar-phos

ferences in the sequence and spatial structure of the interphatase backbone of the RNA minor gree.

acting regions in rRNA and mRNA[94]. The contacts

The second region of the RNA—protein contacts is

between amino acids and mRNA are distributed in a located in the upper part of the h22 helix, where the S15

manner similar to that obseed in the ribosmal com-

protein specifically binds to the highly consesd

plex. Despite the similarity of RNA regions recognized by nucleotides GU/GC of the minor groore. Consered

the S8protein, S8 exhibits significantly different affinities
toward rRNA and mRNA, reasons for which hayv not
been explained gt.

Comparison of the S8protein complexes with
rRNA/mRNA and Xlrbpa-2 protein complex with
dsRNA rewals obvious similarity beteen the structures.
Indeed, the region of the dsRNA interaction with the

amino acid residues of th@2-a3 loop directed tovard
the RNA form hydrogen bonds directly or via the ater
molecule with all four listed nucleotides. Based on the
structural and biochemical data, it as suggested that the
region of consergd GU/GC nucleotides is specifically
recognized by the protein residues, while protein interac
tion with the three-way junction in the 16S rRNA stabi

protein in both cases is represented by a distorted reguldizes their mutual position during the small subunit
structure of the RNA minor groee, where single amino assemblyf5].

acid residues interact with RNA bases. This region is-sur Modeling of the structure of S15 protein coplex
rounded by the areas of contacts formed by the sidavith the specifically recognized mRNA fragment realed
chains of polar and charged amnio acid residues with thehat this fragment has the pseudoknot structure with an
RNA sugar-phosphate backbone, which shield the area ofadditional binding region [102-106]. The structures of the
protein-RNA recognition from water molecules and ions regions recognized in rRNA and mRNA molecules
and increase the energy gain upon the RNA-—protein turned out to be smewhat similar which explains the
interaction. Howewer, in the case of 16S rRNA, the dis possibility of recognition of tw different RNA types by
tortions in the RNA helical structure are significant and the same protein. The authors termed this similarity of
result fran the formation of two nucleotide triplets. Inthe the spatial structure of recognized fragments inawlif-
case of Xlrbpa-2, this distortion is less pronounced, as iferent RNA molecules molecular mimicry [106].
is caused by the bulging out of a single nucleotideHoweer, difference in the structure of mMRNA (pseudo
Therefore, despite the apparent similarjtgpatial strue  knot) and rRNA (three-way junction) fragments might be
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Fig. 9. Structures of ribosmal L1 protein canplexes with RNA. a)L1 from Sulfolobus solfataricua complex with a fragment of 23S rRNA
from T. thermophilugPDB 1MZP). 23S rRNA helices H76, H77, and H78 are indicated. )l from T. thermophilusn complex with a frag
ment of mMRNA from Methanococcus vannielfPDB 2HWS8). The structures are oriented in the same manner relatio the L1 protein

domain I.

the reason for different affinity of the S15 protein tasd
these RNA molecules.

Ribosomal protein uL1The universally consered
ribosamal protein uLl (hereafter L1) together with the
23S rRNA helices H76, H77, and H78 forms a flexible
functionally important fragment of the large ribosoal
subunit called the L1 protuberancfl07]. In E. coli cells,
L1 protein regulates translation of th&11l operon that
includes genes for the ribosmal proteins L1 and L11
[108, 109].

L1 consists of tw domains: the first donain is
formed by the N- and C-terminal parts of the protein
with the second dmain located betwen them[107]. The
first domain has the tw-layer split abc/d unit, or splitb-
a-b structure, and the second doain has the three-Iger
Rossmann fold unique for the ribosoal proteins. The

protein and RNA in the region of the first dmain are
represented by the ldrogen bonds with the RNA sugar-
phosphate backbone, although s® hydrogen bonds are
formed with the RNA bases.

The second region of the RNA-protein contact
involves amino acid residues of the4-helix and a5-b6
loop of the second dmain, which form contacts with the
23S rRNA structure generated by twlong RNA loops.
Majority of the interactions are beteen the charged side
chains of lysine and arginine residues and =® of the
RNA sugar-phosphate backbone. The number of amino
acid residues interacting with RNA in this region is less
than in the first region; therefore, it ws suggested that the
binding with 23S rRNA is determined by the amino acid
residues of the first dmain, while the contacts of the sec
ond domain stabilize the formed rRNA—protein con-

two domains are connected by a flexible link and canplex.

change their relatie orientation in solution[110].

The camplexes of L1 protein with the 23S rRNA
fragments hag two areas of contact (Fig9a) [3]. One of
these areas is located at the surface ofmddn |. Three
strands of theb-sheet form a slightly concay surface of
contact with the 23S rRNA helix H77. Such protein
architecture resembles the structure of the RNP main,
which also containd-sheet surface inelved in the inter
action with RNA. Howeer, sequence of the L1 protein

Analysis of the spatial structure of the L1 protein
complexes with the mRNA fragment reaaled the reason
for a significant difference in the protein affinity toard
rRNA and mRNA [111-113]. Although mRNA fragments
recognized by the L1 protein hav similar nucleotide
sequence and spatial structure, they lack one of the RNA
loops, and therefore, the second RNA region ialved in
the contact with the protein is shortened (Figb). This
results in almost coplete absence of contacts in the sec

does not include the RNP consensus motifs, and the L1lond region and noticeable decrease in the L1 protein

protein residues interact with the dsRNA minor groe
(and not with the ssRNA). Most contacts bewen the
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affinity toward mRNA. It was demonstrated later that the
isolated L1 protein donain | exhibits lower affinity toward
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mMRNA vs. rRNA and is inwlved in the discrimination
between different types of RNA [114115].

formed canplementary areas on their surfadé16]. The
requirement for canplementarity of the RNA—protein

contacts results in the unique nature of the dsRNA-bind
ing structures in these proteins, except proteins with the

CONCLU SIONS

dsRBD domain proteins that interact with dsRNAs con

taining single bulging nucleotides. All other known
Protein interaction with ssRNAs inelves multiple dsDNA-binding proteins recognize unique RNA spatial
RNA-recognizing motifs. An important role in such structures, which preides their selectivity and affinity

interaction in many cases belongs to the protdirsheet
that seres as a “platform” for the RNA molecule.
Howewer, ewen if its surface represents a site for the

toward interacting molecules.
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by additional structural elements that do not belong to the
consened protein motifs. Specific pockets can be also
formed in the absence df-sheet, although the principles
of RNA base positioning via stacking with amatic
residues and recognition due to the contacts with L
polar/charged side chains are presetVin this case.

Studying the spatial structures of proteins inmgplex
with conwoluted spatial structures of RNA realed that
proteins hae a small number of contacts with the RNA
bases and that almost all contacts are formed by thereto 2.
of the RNA sugar-phosphate backbone. This can be
explained by the conformational features of the A-form of
dsRNA, which has a deep and closed fmoexternal con
tacts major groee that impedes direct contact of the pro
tein residues with the dsRNA bases. At the same time, the”
minor groove is shallow and wide. This facilitates access
to the nucleotides, but simultaneously increases accessi
bility of the potential RNA—protein contacts to the exter 4.
nal factors (vater molecules and ions) and premts ener
gy gain during the cmplex formation. As a result, the
contacts betwen the protein atms and atos of the
sugar-phosphate backbone dunate, while recognition
of the nucleotide sequences is hindered orevimpossi
ble. Instead, spatial RNA structures are recognized, '
which is the most pronounced difference in the interac
tions of RNA-binding proteins with ssRNAs and dsRNAs

Another feature of the ssRNA-recognizing proteins 6.
is binding of short (4 to 6 nt) RNA sequences. Such short
region of contact is smetimes insufficient for the tight
RNA binding. Hence, the ssRNA-binding proteins often
contain repeated (duplicated) RNA-binding dmains,
which allows to significantly expand the region of cen
tact, to increase stability of the formed RNA—protein
complexes, and to ensure recognition of a larger number
of different sequences.

dsRNA-binding proteins recognize unique stable g,
RNA spatial structures. These proteins contain pre

7.
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