MECHANISM OF MEMBRANE POTENTIAL GENERATION 1523
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
oxidase. The effect of Zn
2+
ions on the positive side of
the membrane, Biochemistry (Moscow), 86, 105-122,
doi:10.1134/S0006297921010107.
16. Marechal, A., Xu, J. Y., Genko, N., Hartley, A. M.,
Haraux, F., Meunier, B., and Rich, P.R. (2020) Acom-
mon coupling mechanism for A-type heme-copper oxi-
dases from bacteria to mitochondria, Proc. Natl. Acad. Sci.
USA, 117, 9349-9355, doi:10.1073/pnas.2001572117.
17. Siletsky, S. A. (2013) Steps of the coupled charge translo-
cation in the catalytic cycle of cytochromec oxidase, Front.
Biosci. (Landmark Ed), 18, 36-57, doi:10.2741/4086.
18. Fee, J. A., Sanders, D., Slutter, C. E., Doan, P. E.,
Aasa, R., Karpefors, M., and Vänngård, T. (1995)
Multi-frequency epr evidence for a binuclear Cu
A
center
in cytochrome c oxidase: studies with a
63
Cu- and
65
Cu-
enriched, soluble domain of the cytochrome ba
3
, sub-
unitII from Thermus Thermophilus, Biochem. Biophys. Res.
Commun., 212, 77-83, doi:10.1006/bbrc.1995.1938.
19. Soulimane, T., Buse, G., Bourenkov, G. B., Bartunik,
H. D., Huber, R., and Than, M.E. (2000) Structure and
mechanism of the aberrant ba
3
-cytochrome c oxidase
from Thermus thermophilus, EMBO J., 19, 1766-1776,
doi:10.1093/emboj/19.8.1766.
20. Pitcher, R. S., and Watmough, N. J. (2004) Thebacterial
cytochrome cbb
3
oxidases, Biochim. Biophys. Acta, 1655,
388-399, doi:10.1016/j.bbabio.2003.09.017.
21. Buschmann, S., Warkentin, E., Xie, H., Langer, J. D.,
Ermler, U., and Michel, H. (2010) Thestructure of cbb
3
cytochrome oxidase provides insights into proton pump-
ing, Science, 329, 327-330, doi:10.1126/science.1187303.
22. Mitchell, P. (1968) Chemiosmotic coupling and energy
transduction, Glynn Research Ltd., Bodmin.
23. Wikström, M. (1977) Proton pump coupled to cyto-
chromec oxidase in mitochondria, Nature, 266, 271-273,
doi:10.1038/266271a0.
24. Wikström, M. (2004) Cytochrome c oxidase: 25years of
the elusive proton pump, Biochim. Biophys. Acta, 1655,
241-247, doi:10.1016/j.bbabio.2003.07.013.
25. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin,
A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A.,
Semenov, A., and Skulachev, V. P. (1974) Direct measure-
ment of electric current generation by cytochrome oxidase,
H
+
-ATPase and bacteriorhodopsin, Nature, 249, 321-324,
doi:10.1038/249321a0.
26. Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and
Skulachev, V. P. (1981) Fast stages of photoelectric pro-
cesses in biological membranes. I. Bacteriorhodopsin,
Eur. J. Biochem., 117, 461-470, doi:10.1111/j.1432-1033.
1981.tb06361.x.
27. Belevich, I., Gorbikova, E., Belevich, N. P., Rauhama-
ki, V., Wikström, M., and Verkhovsky, M.I. (2010) Ini-
tiation of the proton pump of cytochromec oxidase, Proc.
Natl. Acad. Sci. USA, 107, 18469-18474, doi: 10.1073/
pnas.1010974107.
28. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome
c oxidase: charge translocation coupled to single-electron
partial steps of the catalytic cycle, Biochim. Biophys. Acta,
1817, 476-488, doi:10.1016/j.bbabio.2011.08.003.
29. Siletsky, S. A., Soulimane, T., Belevich, I., Gennis, R.B.,
and Wikström, M. (2021) Specific inhibition of proton
pumping by the T315V mutation in the K channel of cy-
tochrome ba
3
from Thermus thermophilus, Biochim. Bio-
phys. Acta Bioenergetics, 1862, 148450, doi: 10.1016/
j.bbabio.2021.148450.
30. Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B.,
and Konstantinov, A. A. (2004) Transmembrane charge
separation during the ferryl-oxo → oxidized transition in
a non-pumping mutant of cytochromec oxidase, J.Biol.
Chem., 279, 52558-52565, doi:10.1074/jbc.M407549200.
31. Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstan-
tinov, A. A. (2010) Partial steps of charge transloca-
tion in the nonpumping N139L mutant of Rhodo-
bacter sphaeroides cytochrome c oxidase with a blocked
D-channel, Biochemistry, 49, 3060-3073, doi: 10.1021/
bi901719e.
32. Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T.,
Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R.,
Yaono, R., and Yoshikawa, S. (1996) The whole struc-
ture of the 13-subunit oxidized cytochrome c oxidase
at 2.8 Å, Science, 272, 1136-1144, doi: 10.1126/science.
272.5265.1136.
33. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Ya-
ono, R., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P.,
Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsuki-
hara, T. (1998) Redox-coupled crystal structural chang-
es in bovine heart cytochrome c oxidase, Science, 280,
1723-1729, doi:10.1126/science.280.5370.1723.
34. Tsukihara, T., Shimokata, K., Katayama, Y., Shimada,H.,
Muramoto, K., Aoyama, H., Mochizuki, M., Shinzawa-
Itoh, K., Yamashita, E., Yao, M., Ishimura, Y., and
Yoshikawa, S. (2003) The low-spin heme of cytochromec
oxidase as the driving element of the proton-pumping
process, Proc. Natl. Acad. Sci. USA, 100, 15304-15309,
doi:10.1073/pnas.2635097100.
35. Muramoto, K., Hirata, K., Shinzawa-Itoh, K., Yoko-o,S.,
Yamashita, E., Aoyama, H., Tsukihara, T., and Yoshika-
wa, S. (2007) Ahistidine residue acting as a controlling
site for dioxygen reduction and proton pumping by cyto-
chromec oxidase, Proc. Natl. Acad. Sci. USA, 104, 7881-
7886, doi:10.1073/pnas.0610031104.
36. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H.
(1995) Structure at 2.8Å resolution of cytochromec oxi-
dase from Paracoccus denitrificans, Nature, 376, 660-669,
doi:10.1038/376660a0.
37. Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H.
(1995) F
V
fragment-mediated crystallization of the mem-
brane protein bacterial cytochromec oxidase, Nat. Struct.
Biol., 2, 842, doi:10.1038/nsb1095-842.
38. Koepke, J., Olkhova, E., Angerer, H., Muller, H.,
Peng, G., and Michel, H. (2009) High resolution crys-
tal structure of Paracoccus denitrificans cytochrome c
oxidase: New insights into the active site and the proton