ISSN 0006-2979, Biochemistry (Moscow), 2024, Vol. 89, No. 5, pp. 839-852 © Pleiades Publishing, Ltd., 2024.
839
REVIEW
Tumor-Associated Senescent Macrophages, Their Markers,
and Their Role in Tumor Microenvironment
Tamara V. Pukhalskaia
1,2,3
, Taisiya R. Yurakova
2
, Daria A. Bogdanova
1,3
,
and Oleg N. Demidov
1,3,4,a
*
1
Sirius University of Science and Technology, 354340 Federal Territory Sirius, Sirius Russia
2
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
3
Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
4
INSERM UMR1231, Université de Bourgogne, 21000 Dijon, France
a
e-mail: Oleg.Demidov@u-bourgogne.fr
Received December 21, 2023
Revised April 27, 2024
Accepted April 27, 2024
AbstractTumor-associated macrophages (TAMs) are an important component of the tumor microenvironment
(TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direc-
tion of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosup-
pressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in
the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this
review, we have attempted to summarize information available in the literature on the role of senescent macro-
phages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent
cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role
of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy
ofcancer treatment.
DOI: 10.1134/S0006297924050055
Keywords: senescent cells, p16
INK4
, p21
cip1
, CD206, CXCR1, tumor microenvironment, immunosuppression
Abbreviations: Arg1,arginase; BMDM,bone marrow-derived macrophages; LCCM-BMDM,bone marrow-derived macrophages
cultivated in L929-cell conditioned medium; M-CSF-BMDM, bone marrow-derived macrophages cultivated with recombi-
nant M-CSF; NAD,nicotinamide adenine dinucleotide; SCA,single-cell analysis; TME,tumor microenvironment; SASP,senes-
cence-associated secretory phenotype; TAMs,Tumor-associated macrophages; TGF-β,transforming growth factor beta.
* To whom correspondence should be addressed.
INTRODUCTION
Tumor microenvironment (TME) comprises a
complex heterogenous system including immune cells,
endothelial and stromal cells, as well as extracellular
matrix [1-7]. Recent analysis of single-cell transcrip-
tome (single-cell analysis, SCA) demonstrated that up
to 90% of cells in the tumor microenvironment could
be non-transformed [8]. TME composition varies de-
pending on the type and stage of the tumor devel-
opment; organ in which a primary tumor emerges;
factors expressed by the tumor cells, and patient’s an-
amnesis [9].
Recently more attention has been paid to the ef-
fects of cell aging, or the so-called senescence state on
the tumor growth and development [10]. Phenotype of
senescent cell is heterogenous and depends on the type
of the cells subjected to senescence and factors causing
this state. In general, senescence is defined by the irre-
versible arrest of cell cycle, elevated lysosomal activi-
ty, resistance to apoptotic stimuli, enhanced glycolysis,
increased DNA damage, as well as by the increased
secretion of chemokines, cytokines, and growth fac-
tors combined under the name senescence-associated
secretory phenotype (SASP). Through the paracrine
effects on the surrounding cells, SASP could facilitate
PUKHALSKAIA et al.840
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
initiation of epithelial-mesenchymal transition [11, 12],
acquiring pluripotency (stemness) by the cells [13, 14],
local tissue invasion [15], angiogenesis [16], fibroblast
activation [17], immunosuppression [18, 19], enhanced
metastasizing [20], and resistance to therapy [21].
Based on the above-mentioned functions, identi-
fication of the senescent cells most often is based on
such markers as enhanced expression of cell cycle in-
hibitors, p16
INK4
and p21
cip1
[22]; increased activity of
lysosomal β-galactosidase associated with aging [23];
increased content, in comparison with other cells, of
the phosphorylated form of H2AX histone reflecting
presence of DNA damage; cytokines typical of SASP,
such as, IL-6 [24]. It must be mentioned that at present
there is no unique single marker of senescence, and
most often several methods are used to confirm this
cell phenotype.
In addition to spontaneous aging, the therapy-in-
duced aging is often detected in TME. It was shown in
various studies that the classic cytotoxic therapy, tar-
geted therapy, and immunotherapy could induce cell
aging [25]. Under the action of these factors all cell
types in TME could be subjected to senescence and af-
fect tumor cells. However, the tumor-associated mac-
rophages (TAMs), which play an important role in TME
comprising the most prevalent population of immune
cells infiltrating tumor, attract most attention in the
context of senescence [26]. As immune system cells,
they define, to a large extent, immune landscape of the
TME, and could facilitate the disease progression [8].
In particular, it was shown that the presence of TAMs
in a tumor is associated with poor prognosis of the dis-
ease and low efficiency of therapy [27-29]. Despite the
fact that removal or reprogramming of senescent TAMs
seems as a promising approach to increase efficiency
of cancer therapy, up to recent times information on
the phenotype typical for the senescent macrophages
in TME and mechanism underlying its formation was
practically absent. Hence, it seems reasonable to dis-
cuss progress in the area of research associated with
the active search for universal biomarkers of the se-
nescent TAMs and with the recently introduced novel
models for detection of biological effects of this cell
subpopulation on the tumor growth and development.
SENESCENT MACROPHAGES IN A TUMOR
Same as other types of cells in tumor microenvi-
ronment, TAMs could be subjected to senescence, how-
ever, potential biological mechanisms of appearance
of senescent macrophages in a tumor and their prog-
nostic value are poorly understood [28]. The fact that
the in  vivo and in  vitro phenotypes of the macrophages
from the same type of tumor could differ significantly
complicates investigation of this issue. Moreover, the
heterogeneity of the mechanisms and pleiotropy of
the senescence mediators in tumor diseases is further
complicated by the genetic diversity of human tumors
and complex interactions between the tumor cells and
cells in their microenvironment during oncogenesis
[30]. At the same time, cells in TME could also have
a very heterogenous phenotype. In particular, macro-
phages in  vivo are characterized by the wide spectrum
of subpopulations, in which subpopulation of senes-
cent macrophages seems to be therapeutically signifi-
cant. The features of senescent macrophages allowing
to distinguish them from other subpopulations of mac-
rophages will be described below (figure).
Phenotype of senescent TAMs. To date the fol-
lowing subpopulations of TAMs have been described
the most: proinflammatory M1-like and immunosup-
pressive M2-like macrophages [more detailed descrip-
tion of M1 and M2 macrophages are provided in the
paper by Yurakova etal. [31] in this issue of Biochem-
istry (Moscow) journal]. Phenotype of the senescent
macrophages in the tumor microenvironment could
be assigned neither to the traditional polarization
classes typical for M2 (high expression of Arg1), nor
typical for M1 (high expression of iNOS). Macrophages
in TME could have different phenotypes depending of
the tumor type, nature of therapy, and particular clin-
ical manifestations [32]. Hence, search for the specific
markers allowing selective distinguishing of the senes-
cent macrophages from the other TAMs is an import-
ant task for the development of therapy targeting this
population of the cells. Available data and identified
markers typical for the senescent and M1/M2 macro-
phages are summarized and compared in Table1 [33].
Aging is accompanied by chronic inflammation,
which is manifested by the increase of expression of
SASP components: proinflammatory cytokines IL-1α,
IL-6, and TNF, C-reactive protein, matrix metallopro-
teases MMP-3 and MMP-9 modulating extracellular
matrix, as well as chemokines CXCL-1 and CXCL-10 at-
tracting neutrophils and monocytes, respectively [46,
54]. All these factors could affect tumor cells and their
environment. It was concluded in the recent meta-re-
view by Moss etal. that the markers of proinflamma-
tory (M1) macrophages including CD11c, iNOS, MHC-II,
and CD80 commonly increase with age [55]; however,
it is still unknown how this is associated with the pat-
tern of tumor microenvironment.
Another part of the data is concentrated on the
fact that the senescent macrophages have a M2-like
phenotype. It is generally recognized that the macro-
phages with M2-polarization demonstrate enhanced
expression of arginase-1 (Arg1) involved in arginine
metabolism [33], and facilitate development of the
non-small-cell lung cancer, and their presence in a tu-
mor microenvironment correlates with lower survival
of the patients, increased metastasizing, and enhanced
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 841
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Potential markers of senescent TAMs. More universal markers found in different models of tumor genesis are shown on the
left; and characterized TAMs from the lung tumors are shown on the right. Combined increase of the expression of inhibitors of
cyclin-dependent kinases p16
INK4
and/or p21
cip1
, Arg1, CD206, CXCR1, CD38 is typical for the senescent TAMs, as well as increased
arginine metabolism and glycolysis. SASP of the senescent TAMs is characterized by secreted molecules such as TGF-β, IL-10,
IL-6, TNF, IL-1β, MMP12, TIMP2, CXCL12, CXCL13, HGF. For the lung cancer models the following molecules secreted by the
TAMs were detected: Bmp2, Ccl2, Ccl7, Ccl8, Ccl24, Cxcl13, and Il10. The markers Abca1, Fizz1, Rack1, Mcp-1, Cd40, Cox2 have
been less investigated, but have certain diagnostics potential for identification of senescent macrophages. Created with the
help ofBioRender.com.
Table 1. Comparison of the markers typical for M1/M2 and senescent macrophages
Markers
M1
[34-37]
M2a
[8, 34, 37, 38]
M2b
[38, 39]
M2c
[38, 40]
M2d
[38, 41-43]
Senescent macrophages
[8, 44-53]
TNF, IL-6 + + +
IL-10 + + + + +
TGF-β + + +
IL-1 + + +
CD206 + +
ARG1 + + + +
iNOS + + + +/–
MHC-II, CD80 + +/–
CD163 + + +
CD38 + +
Expression of Toll-like
receptors (TLRs)
TLR2/4 TLR1/8
expression
of all TLRs decreases
PUKHALSKAIA et al.842
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
proliferation of tumor cells [56, 57]. Moreover, the ag-
ing TAMs also exhibit the M2-like immunosuppressive
phenotype, which was demonstrated in several studies
[8, 34, 37-43]. Gene clusters expressed in the senescent
macrophages from the samples derived from the pa-
tients with refractory bladder cancer were identified
using single-cell transcriptome analysis [27]. Among
those genes, the gene of transforming growth factor
beta (TGF-β) was detected, which is characteristic for
the immunosuppressive tumor microenvironment. Ex-
pression of the aldo-keto reductase B gene (AKR1B1)
was also noted, which plays an important role in in-
flammation and metabolism of various chemotherapy
preparation, as well as in cell differentiation, prolifer-
ation, and apoptosis [28, 58].
Both in humans and in mice the senescent TAMs
demonstrate reduced expression of the molecules of
major histocompatibility complex (MHCII) and of the
Toll-like receptors (TLR) [52], which is accompanied by
the decrease of phagocytic activity [59], efferocytosis,
and autophagy [46]. This also characterizes the aging
macrophages as more immunosuppressive cells de-
spite the enhanced expression of SASP.
New potential markers of the senescent macro-
phages (ABCA1, FIZZ1, RACK1, MCP-1, CD40, COX2) re-
ported in the recent systematic review by Moss etal.
[55] should be also mentioned. It is likely that these
markers also play an important role in the senes-
cence of TAMs. Despite the fact that there is no unique
marker identifying aging cells, overexpression of the
cyclin-dependent kinases p16
INK4a
and p21
cip1
has been
used for a long time as a marker of aging cells invitro
and in  vivo both in mouse and human models [48, 60,
61] including for macrophages [49, 50, 62].
Metabolism of senescent TAMs. In addition to
phenotypic characteristics, functional and metabolic
features of the senescent macrophages also should be
considered. One of the peculiarities of the senescent
cells is preservation of metabolic activity supporting
SASP program and other specific functions despite the
arrest of cell cycle [63]. As a rule, accumulation of dys-
functional mitochondria occurs in the senescent im-
mune calls, as well as activation of glycolysis instead
of oxidative phosphorylation (OXPHOS), which leads to
bioenergetic imbalance [64].
Similar metabolic adaptations are typical for the
proinflammatory M1 macrophages, which predominate-
ly use glycolysis and demonstrate reduced OXPHOS,
while the alternatively activated M2 macrophages de-
pend mostly on OXPHOS [65, 66]. From the functional
point of view enhanced glucose metabolism in TAMs
is required for synthesis of various molecules involved
in SASP, in particular, it facilitates enhanced secretion
of cathepsin-B by macrophages and tumor progression
[63, 67, 68]. Interestingly enough, metabolic adapta-
tions of other types of senescent cells could be differ-
ent from the adaptations in the senescent TAMs. For
example, increase of oxidative phosphorylation is typi-
cal for the senescent endothelial cells [69], hepatocytes
[70, 71], β-cells in diabetes [72, 73], and hematopoietic
stem cells [74]. However, increase of glycolysis is more
typical for the senescent macrophages. Inhibition of
this metabolic pathway could potentially be an ap-
proach for senolytic therapy [75].
Nicotinamide adenine dinucleotide (NAD) is pres-
ent in an organism in an oxidized (NAD
+
) and reduced
state (NADH). NAD is an important coenzyme for re-
dox reactions, which plays one of the key roles in the
energy metabolism [76], and also is a substrate for sir-
tuins, PARP1, and ectoenzymes CD38 and CD157 [77].
Numerous studies have shown that NAD
+
levels de-
crease with age [78]. It has also been shown that the
monocytes and macrophages of elderly patients have
reduced respiratory capacity due to insufficient level
of NAD [64].
Activation of CD38 during aging could lead to in-
creased signalling by NF-κB in macrophages [53, 79],
which facilitates induction of the SASP factors ex-
pression [80]. The SASP factors, such as IL-6 secreted
in the tumor microenvironment, could activate the
expression of CD38 in macrophages [63]. The ectoen-
zymes CD38 and CD157, in turn, can hydrolyse NAD
+
in tumour tissues and release extracellular adenosine,
which is involved in immunosuppression [81]. Hence,
aging cells expressing CD38 could initiate loss of NAD
+
,
which could lead to an increase of the number of se-
nescent cells through the effects of SASP factors via
the positive feedback mechanism.
The NF-κB signaling and the level of mitochondri-
al Ca
2+
(mCa
2+
) play an important role in regulation of
inflammatory response, induction of the SASP pheno-
type, and polarization of macrophages [82]. Association
between the NF-κB signaling and calcium metabolism
was observed during analysis of 700 human transcrip-
tomes. This analysis revealed that age correlates with
the expression of the mitochondrial calcium uniporter
gene (MCU) and its regulatory subunit MICU1. These
genes play an important role in the transmission of
mCa
2+
signals [47].
EFFECTS OF SENESCENT TAMs
ON TUMOR PROGRESSION
Pathogenic effects of senescent macrophages on
growth and development of tumors in the non-small
cell lung cancer models were demonstrated in the re-
cent year. Haston et al. established a mouse model,
p16-FDR, which allowed to establish that TAMs and,
to a lesser degree, endothelial cells comprise the main
pool of senescent cells populating the KRAS-induced
lung tumors [8]. Removal of the p16
INK4a+
senescent
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 843
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Table 2. Main senolytics currently used
Senolytic/Senomorphic Mechanism of action Effect on senescent macrophages References
Dasatinib + Quercetin
inhibition of Src/Abl
HIF-1α, PI3-kinase
exerts effects [84, 85]
ABT-263 (Navitoclax) inhibition of proteins of Bcl-2 family exerts effects [86]
ABT-737 inhibition of proteins of Bcl-2 family exerts effects [8]
Venetoclax proteins of Bcl-2 family not investigated [87]
Fisetin PTEN-mTor cascade exerts effects [88]
SR12343 inhibitor of NF-Kb not investigated [89, 90]
Apigenin IRAK1/IκBα/NF-κB not investigated [91, 92]
Cardiac glycosides mainly inhibitors of Na
+
/K
+
-ATPase not investigated [93-95]
cells using senolytic approaches was shown to pro-
long survival and inhibit tumor growth [8, 83]. Senes-
cent TAMs in the p16-FDR model demonstrated the
CD206
+
p16
INK4a+
phenotype and also expressed numer-
ous tumor-stimulating SASP factors, which were found
to be unique to the tumors formed in the lungs (Bmp2,
Ccl2, Ccl7, Ccl8, Ccl24, Cxcl13, and Il10), and not typical
for the previously described classic SASP factors such
as Tnf, Mcp1, Il6, Il1b Il7, Mmp12, Timp2, Cxcl-12/13,
Hgf) [8, 50, 51]. The study by Haston etal. [8] became a
key study in the field of senescent macrophages in tu-
mors, as there was no clear understanding of whether
the macrophages actually had senescent cells proper-
ties. Interestingly enough, the macrophage phenotype
similar to that one observed in the KRAS-induced lung
tumors in mice was also found in the old mice at the
age of 20-22 months.
A previously established transgenic mouse line
(INK-ATTAC) [29] was used in the study by Prieto
et al. Using SCA, the authors found with the help of
SCA a population of senescent alveolar macrophages
SIGLEC
+
p16
INK4a+
CXCR1
high
localized in the tissues of old
mice and in lung tumors. The SIGLEC
+
p16
INK4a+
CXCR1
high
subpopulation promoted adenoma formation and in-
hibited proliferation and tumor infiltration with the
CD8
+
lymphocytes. Targeted depletion of the p16
INK4a+
senescent cells in the INK-ATTAC model prevented de-
velopment of negative effects mediated by the senes-
cent cells in TME, and slowed down oncogenesis in the
KRAS mice [29].
The studies by Prieto etal. [29] and Haston etal.
[8] show that the strategy involving removal of senes-
cent macrophages from the TME has an anti-tumor po-
tential. This approach could be suggested as an adju-
vant therapy for treatment of oncological diseases.
A new class of drugs, the senolytics have been
suggested as agents for selective removal of senescent
cells. Information on the most popular and widely
used senolytics is presented in Table2. Some of them
have already been approved for clinical use in the
treatment of various diseases, hence, so their repur-
posing for senolytic therapy could occur within a short
period of time, and such preparations might be used
for reprogramming of tumor microenvironment in the
cancer patients in the nearest future.
VARIETY OF MODELS FOR INVESTIGATION
OF SENESCENT TAMs
In the final section of the review, we consider im-
portant to summarize existing approaches to model-
ing of TAMs and discuss whether some of the models
could be used to model senescent TAMs. In particular,
the following in  vitro approaches have been suggested
in the literature: association of the primary macro-
phages or cell lines with the tumor adding tumor-cell
conditioned medium [96], co-cultivation, cultivation in
a Transwell® system [33, 97], isolation of TAMs direct-
ly from tumor tissues and their following in  vitro culti-
vation [98-100].
Human TAMs in  vitro. The most popular approach
is based on the use of transformed human monocytic
cell lines such as THP-1 and U937 after stimulation
with phorbol-myristate-acetate. The obtained mac-
rophages are cultivated in a tumor-cell conditioned
medium [101], in some cases factors facilitating de-
velopment of the M2-like phenotype (IL-4 and IL-10)
are added [102]. This approach helps with the model
standardization; however, this approach has several
PUKHALSKAIA et al.844
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
drawbacks for investigation of senescent TAMs such
as initial priming of the cells in the direction of the
M2-like phenotype, which limits the possibilities for
monitoring changes in the transcription and metabolic
profiles in this particular model in response to associa-
tion with tumor and following induction of aging.
Another method for creation of human TAMs is
based on obtaining macrophage precursors from the
human peripheral blood by cultivation in the presence
of human granulocyte-macrophage colony-stimulating
factor (GM-CSF) followed by activation with IFN-g, LPS
for M1, while for obtaining of M2 and TAMs macro-
phages are differentiated in the medium containing
human macrophage colony-stimulating factor (M-CSF)
followed by stimulation with IL-4 [103].
It is worth noting that the 2D in  vitro system, in
which TAMs are prepared by adding tumor-cell con-
ditioned medium directly to macrophages, is often
insufficient to detect changes associated with the se-
nescent macrophages. In particular, only co-cultivation
of macrophages with tumor cells in the study by Enu-
kashvily etal. [104] allowed detecting transcription of
pericentromeric satellite repeats HS2/HS3, which are
likely to be associated with aging. These differences
demonstrate importance of direct intercellular interac-
tions between the cells of microenvironment and tu-
mor cells, which is also important to consider during
selection of the model of TAMs.
Mouse TAMs in  vitro. It is our opinion that the
in  vitro models of human and mice TAMs have a
number of fundamental differences. In particular,
the main approach to generate mouse TAMs in  vitro
is based on the use of bone marrow-derived macro-
phages (BMDM). Two possible methods of macrophage
differentiation for modelling mouse TAMs have been
described for mouse TAMs modeling in the litera-
ture: (i) by addition of mouse M-CSF (M-CSF-BMDM);
(ii)by addition of a medium conditioned by the L929
(LCCM) cell line (LCCM-BMDM) [31]. In addition to
M-CSF, LCCM contains chemerin (Rarres2), factor in-
hibiting migration of macrophages (Mif), osteopontin,
Ccl7, Ccl2, Cxcl1, Cx3cl1, Ccl9, Gerem1, and Tgf-β [105].
Macrophages generated by these two methods differ
in a number of parameters, which has been described
previously; the differences were observed both in the
case of stimulation with LPS and in the non-activat-
ed state. The LCCM-BMDM secrete Tnf, Il-6, and Il-12
at lower levels after LPS stimulation compared to the
M-CSF-BMDM, show increase of glycolysis indicators,
have larger mitochondrial mass with high percent of
dysfunctional mitochondria. Secretion of Il-10 by the
non-activated LCCM-BMDM has been demonstrated in
comparison to M-CSF-BMDM [106]. This has to be tak-
en in consideration when working with the senescent
TAMs models in  vitro, as the increase of the Il10 ex-
pression in macrophages in the course of inflammato-
ry processes has been described as one of the changes
associated with aging [55].
The models investigating interactions of TAMs
with tumor microenvironment in  vitro provide sev-
eral clear advantages despite being artificial to a cer-
tain degree. In particular, this approach enables less
labor-consuming experimental design, is low-cost, and
provides the possibility to perform high throughput
screening of large libraries of chemical compounds
with the goal of identification of novel medicinal
preparations allowing to decrease negative properties
of TAMs and to increase their anti-tumor activity.
In recent years investigations of tumor microen-
vironment using cultivation of tumor organoids have
been actively developing. This approach occupies an
intermediate position between the studies of the role
of TAMs in  vitro and in  vivo; while this approach re-
mains relatively simple and cost-effective, it allows ef-
fective modeling of complex three-dimensional inter-
actions of TAMs with extracellular matrix and various
types of cells in TME [107]. Considering rapid progress
in this area, it could be expected that the experimen-
tal protocols involving cultivation of organoids will
become very popular in the nearest future.
Study of TAMs in  vivo. Experimental laboratory
animal models of oncogenesis using predominantly
mouse models remain the gold standard for the study
of TAMs. Supplemented with success in single-cell se-
quencing (single-cell analysis, SCA) and SCA data on
different signatures of TAMs derived ex  vivo from the
biopsies of cancer patients, this approach allows re-
ceiving most accurate results and expand our knowl-
edge on the role of macrophages at different stages of
oncogenesis [108-111]. In the section devoted to the ef-
fects of senescent TAMs on tumor progression, success-
ful examples of creating and using in  vivo models to
study senescent TAMs have been presented [29]. Data
on characteristics of these mouse models and a num-
ber of other promising in  vivo
models for the study of
senescence are summarized in Table  3. Information
presented in the Table  3 could help the interested re-
searchers with selection of an appropriate experimen-
tal model [8, 29, 48, 62, 98-100, 112, 113].
CONCLUSIONS
Acquiring senescent phenotype by the cells of tu-
mor environment including TAMs could significantly
affect tumor progression and its resistance to mod-
ern anti-tumor therapies. Senescent modality of TAMs
does not totally fit to the presently existing function-
al classification of macrophages such as M1/M2 po-
larization. Number of studies devoted to analysis of
tumor microenvironment at the level of single cells
is increasing exponentially; furthermore, novel and
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 845
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Table 3. Mouse models for investigating senescence
Name
of the mouse
model
Description
Reporter system
(color of senescent cells)
System
for removal
of senescent cells
Inducibility
of the system
References
p16-3MR
BAC transgene;
reporter cassette
under control
of p16
INK4a
promoter
luciferase/mRFP
(red, ex584/em607)
HSV-TK +
+ ganciclovir
only cell
removal –
ganciclovir
[114]
p16-Cre and
p16-CREERt2
knock-in
of the cassette
into the last exon
p16
INK4a
after
STOP codon
Rosa26-mTmG
(green, ex484/em510)
Rosa26-lsl-DTA
Tamoxifen
for p16-CREERt2
[62]
p16Ink4a-
CreERT2
knock-in
of the CreERT2 gene
into the first exon
of p16
INK4a
Rosa26-CAG-lsl-tdTomato
(orange, ex554/em581)
Rosa26-SA-lsl-
DTR-IRES-
tdTomato
Tamoxifen;
Tamoxifen +
+ diphtheria
toxin
[115]
p21-Cre
attP transgene;
reporter cassette
under control
of the minimal
promoter
p21
cip1
p21-CreERT2-
IRES-GFP
Rosa26-CAG-lsl-tdTomato
(orange, ex554/em581);
or (green, ex484/em510)
Rosa26-lsl-LUC/
Rosa26-lsl-DTA
Tamoxifen [48]
INK-ATTAC
transgene;
reporter cassette
under control
of the minimal
promoter p16
INK4a
FKBP–Casp8-IRES-EGFP
(green, ex488/em507)
FKBP–Casp8
only cell
removal –
AP20187
[29, 116]
p16-FDR
knock-in
of the cassette into
the last exon
p16
INK4a
after
the STOP codon;
P16-P2A-FLPo-
P2A-DTR-mCherry
Rosa26 frt-STOP-frt-EGFP
(green, ex488/em507)
or DTR-mCherry
(red, ex587/em610)
DTR-mCherry
only cell
removal –
diphtheria
toxin
[8]
Note. HSV-TK, herpes simple virus thymidine kinase gene; DTA, diphtheria toxin A gene; DTR, diphtheria toxin receptor
gene; LPo, optimized flippase-recombinase gene; mTmG, loxP-tdTomato-STOP-loxP-GFP; FKBP–Casp8–FK506-binding-protein
caspase8 gene.
improved in  vivo models for investigation of senes-
cent TAMs have been suggested in recent years. All
this would facilitate detailed characterization of this
subpopulation of myeloid cells in tumors and expand
our understanding of the role of senescent TAMs in
oncogenesis in the nearest future. We hope that the
progress in methodology of investigation of senescent
TAMs discussed in this review will help the readers to
select appropriate strategy in investigation of various
aspects of tumor growth. Senescent TAMs, as a sepa-
rate population of cells, deserves special attention of
the researchers; the recently introduced new class of
therapeutic preparations, senolytics, which limit nega-
tive effects of the senescent cells by changing the frac-
tion of senescent cells in the tumor microenvironment,
could increase significantly efficiency of various anti-
cancer therapies.
Acknowledgments. The authors are grateful to
Drutskaya Marina Sergeevna for valuable discussions
and advices.
Contributions. T.V.P., O.N.D., conceptualization;
T.V.P., D.A.B., wrote the manuscript; T.V.P., D.A.B., visu-
alization; O.N.D., D.A.B., T.R.U., T.V.P., edited the manu-
script. All authors have read and agreed to the pub-
lished version of the manuscript.
PUKHALSKAIA et al.846
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Funding. This work was financially supported by
the Russian Science Foundation (grant 19-75-20128).
Work of T. V. Pukhalskaia and D. A.  Bogdanova was
in part supported by the Ministry of Science and High-
er Education of the Russian Federation (Agreement
no.075-10-2021-093; Project NIR-IMB-2102).
Ethics declarations. This work does not contain
any studies involving human and animal subjects.
Theauthors of this work declare that they have nocon-
flicts of interest.
REFERENCES
1. Sobierajska,K., Ciszewski, W.M., Sacewicz-Hofman,I.,
and Niewiarowska, J. (2020) Endothelial cells in the
tumor microenvironment, Adv. Exp. Med. Biol., 1234,
71-86, doi:10.1007/978-3-030-37184-5_6.
2. Uyanik, B., Goloudina, A. R., Akbarali, A., Grigo-
rash, B.B., Petukhov, A. V., Singhal, S., Eruslanov,E.,
Chaloyard, J., Lagorgette, L., Hadi, T., Baidyuk, E. V.,
Sakai,H., Tessarollo, L., Ryffel,B., Mazur, S.J., Lirus-
si,F., Garrido,C., Appella,E., and Demidov, O.N. (2021)
Inhibition of the DNA damage response phosphatase
PPM1D reprograms neutrophils to enhance anti-
tumor immune responses, Nat. Commun., 12, 3622,
doi:10.1038/s41467-021-23330-6.
3. Van der Leun, A.M., Thommen, D.S., and Schumach-
er, T.N. (2020) CD8
+
T cell states in human cancer: in-
sights from single-cell analysis, Nat. Rev. Cancer, 20,
218-232, doi:10.1038/s41568-019-0235-4.
4. Zhao,Y., Shen, M., Wu,L., Yang, H., Yao, Y., Yang,Q.,
Du,J., Liu,L., Li,Y., and Bai,Y. (2023) Stromal cells in
the tumor microenvironment: accomplices of tumor
progression? Cell Death Dis., 14, 587, doi: 10.1038/
S41419-023-06110-6.
5. Binnewies, M., Roberts, E. W., Kersten, K., Chan, V.,
Fearon, D.F., Merad,M., Coussens, L.M., Gabrilovich,
D.I., Ostrand-Rosenberg,S., Hedrick, C.C., Vonderhe-
ide, R. H., Pittet, M. J., Jain, R. K., Zou, W., Howcroft,
T.K., Woodhouse, E.C., Weinberg, R.A., and Krummel,
M.F. (2018) Understanding the tumor immune micro-
environment (TIME) for effective therapy, Nat. Med.,
24, 541-550, doi:10.1038/s41591-018-0014-x.
6. Anderson, N. M., and Simon, M. C. (2020) The tu-
mor microenvironment, Curr. Biol., 30, R921-R925,
doi:10.1016/J.CUB.2020.06.081.
7. Atretkhany, K.S.N., and Drutskaya, M.S. (2016) My-
eloid-derived suppressor cells and proinflamma-
tory cytokines as targets for cancer therapy, Bio-
chemistry (Moscow), 81, 1274-1283, doi: 10.1134/
S0006297916110055.
8. Haston, S., Gonzalez-Gualda, E., Morsli, S., Ge, J.,
Reen, V., Calderwood, A., Moutsopoulos, I., Pa-
nousopoulos, L., Deletic, P., Carreno, G., Guiho, R.,
Manshaei, S., Gonzalez-Meljem, J. M., Lim, H. Y.,
Simpson, D.J., Birch,J., Pallikonda, H.A., Chandra,T.,
Macias,D., Doherty, G.J., Rassl, D.M., Rintoul, R.C., Si-
gnore,M., Mohorianu, I., Akbar, A.N., Gil,J., Muñoz-
Espín,D., and Martinez-Barbera, J.P. (2023) Clearance
of senescent macrophages ameliorates tumorigenesis
in KRAS-driven lung cancer, Cancer Cell, 41, 1242-1260.
e6, doi:10.1016/J.CCELL.2023.05.004.
9. De Visser, K. E., and Joyce, J. A. (2023) The evolving
tumor microenvironment: from cancer initiation
to metastatic outgrowth, Cancer Cell, 41, 374-403,
doi:10.1016/J.CCELL.2023.02.016.
10. Schmitt, C.A., Wang,B., and Demaria,M. (2022) Senes-
cence and cancer– role and therapeutic opportunities,
Nat. Rev. Clin. Oncol., 19, 619-636, doi:10.1038/S41571-
022-00668-4.
11. Canino,C., Mori,F., Cambria,A., Diamantini,A., Ger-
moni,S., Alessandrini,G., Borsellino,G., Galati,R., Bat-
tistini,L., Blandino,R., Facciolo,F., Citro,G., Strano,S.,
Muti,P., Blandino,G., and Cioce, M. (2012) SASP me-
diates chemoresistance and tumor-initiating- activity
of mesothelioma cells, Oncogene, 31, 3148-3163,
doi:10.1038/ONC.2011.485.
12. Bogdanova, D. A., Kolosova, E. D., Pukhalskaia, T. V.,
Levchuk, K.A., Demidov, O.N., and Belotserkovskaya,
E.V. (2024) The differential effect of senolytics on SASP
cytokine secretion and regulation of EMT by CAFs,
Int.J. Mol. Sci., 25, 4031, doi:10.3390/IJMS25074031.
13. Milanovic, M., Fan, D. N. Y., Belenki, D., Däbritz,
J.H.M., Zhao,Z., Yu,Y., Dörr, J.R., Dimitrova,L., Len-
ze,D., Monteiro Barbosa, I.A., Mendoza-Parra, M.A.,
Kanashova,T., Metzner,M., Pardon, K., Reimann,M.,
Trumpp,A., Dörken,B., Zuber,J., Gronemeyer,H., Hum-
mel,M., Dittmar,G., Lee,S., and Schmitt, C.A. (2018)
Senescence-associated reprogramming promotes
cancer stemness, Nature, 553, 96-100, doi: 10.1038/
NATURE25167.
14. Nacarelli,T., Fukumoto, T., Zundell, J. A., Fatkhutdin-
ov,N., Jean,S., Cadungog, M.G., Borowsky, M.E., and
Zhang,R. (2020) NAMPT inhibition suppresses cancer
stem-like cells associated with therapy-induced se-
nescence in ovarian cancer, Cancer Res., 80, 890-900,
doi:10.1158/0008-5472.CAN-19-2830.
15. Kim, Y.H., Choi, Y.W., Lee,J., Soh, E.Y., Kim, J.H., and
Park, T. J. (2017) Senescent tumor cells lead the col-
lective invasion in thyroid cancer, Nat. Commun., 8,
15208, doi:10.1038/NCOMMS15208.
16. Coppe, J. P., Kauser, K., Campisi, J., and Beauséjour,
C.M. (2006) Secretion of vascular endothelial growth
factor by primary human fibroblasts at senes-
cence, J. Biol. Chem., 281, 29568-29574, doi: 10.1074/
JBC.M603307200.
17. Toste, P. A., Nguyen, A. H., Kadera, B. E., Duong, M.,
Wu,N., Gawlas,I., Tran, L.M., Bikhchandani,M., Li,L.,
Patel, S.G., Dawson, D.W., and Donahue, T.R. (2016)
Chemotherapy-induced inflammatory gene signature
and protumorigenic phenotype in pancreatic CAFs via
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 847
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
stress-associated MAPK, Mol. Cancer Res., 14, 437-447,
doi:10.1158/1541-7786.MCR-15-0348.
18. Chibaya, L., Snyder, J., and Ruscetti, M. (2022) Senes-
cence and the tumor-immune landscape: Implications
for cancer immunotherapy, Semin. Cancer Biol., 86,
827-845, doi:10.1016/j.semcancer.2022.02.005.
19. Ruhland, M. K., Loza, A. J., Capietto, A. H., Luo, X.,
Knolhoff, B.L., Flanagan, K.C., Belt, B.A., Alspach,E.,
Leahy, K., Luo, J., Schaffer, A., Edwards, J. R., Long-
more, G., Faccio, R., DeNardo, D. G., and Stewart,
S. A. (2016) Stromal senescence establishes an im-
munosuppressive microenvironment that drives tu-
morigenesis, Nat. Commun., 7, 11762, doi: 10.1038/
NCOMMS11762.
20. Angelini, P. D., Zacarias Fluck, M. F., Pedersen, K.,
Parra-Palau, J. L., Guiu, M., Bernadó Morales, C.,
Vicario, R., Luque-García, A., Navalpotro, N. P., Gi-
ralt, J., Canals, F., Gomis, R. R., Tabernero, J., Basel-
ga,J., Villanueva,J., and Arribas,J. (2013) Constitutive
HER2 signaling promotes breast cancer metastasis
through cellular senescence, Cancer Res., 73, 450-458,
doi:10.1158/0008-5472.CAN-12-2301.
21. Chambers, C.R., Ritchie, S., Pereira, B.A., and Timp-
son, P. (2021) Overcoming the senescence-associated
secretory phenotype (SASP): a complex mechanism
of resistance in the treatment of cancer, Mol. Oncol.,
15, 3242-3255, doi:10.1002/1878-0261.13042.
22. Hernandez-Segura, A., Nehme, J., and Demaria, M.
(2018) Hallmarks of cellular senescence, Trends Cell
Biol., 28, 436-453, doi:10.1016/J.TCB.2018.02.001.
23. Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., and
Johung,K. (2006) Senescence-associated beta-galacto-
sidase is lysosomal beta-galactosidase, Aging Cell, 5,
187-195, doi:10.1111/J.1474-9726.2006.00199.X.
24. Martyshkina, Y. S., Tereshchenko, V. P., Bogdanova,
D.A., and Rybtsov, S.A. (2023) Reliable hallmarks and
biomarkers of senescent lymphocytes, Int.J. Mol. Sci.,
24, 15653, doi:10.3390/IJMS242115653.
25. Prasanna, P. G., Citrin, D. E., Hildesheim, J., Ahmed,
M.M., Venkatachalam,S., Riscuta,G., Xi,D., Zheng,G.,
Deursen, J. V., Goronzy, J., Kron, S. J., Anscher, M. S.,
Sharpless, N.E., Campisi,J., Brown, S.L., Niedernhofer,
L.J., O’Loghlen,A., Georgakilas, A.G., Paris,F., Gius,D.,
Gewirtz, D.A., Schmitt, C.A., Abazeed, M.E., Kirkland,
J.L., Richmond,A., Romesser, P.B., Lowe, S.W., Gil,J.,
Mendonca, M. S., Burma, S., Zhou, D., and Coleman,
C. N. (2021) Therapy-induced senescence: opportu-
nities to improve anticancer therapy, J. Natl. Cancer
Inst., 113, 1285-1298, doi:10.1093/JNCI/DJAB064.
26. Dehne,N., Mora,J., Namgaladze,D., Weigert,A., and
Brüne, B. (2017) Cancer cell and macrophage cross-
talk in the tumor microenvironment, Curr. Opin. Phar-
macol., 35, 12-19, doi:10.1016/J.COPH.2017.04.007.
27. Weinstein, J. N., Akbani,R., Broom, B. M., Wang, W.,
Verhaak, R. G.W., and McConkey, D. (2014) Compre-
hensive molecular characterization of urothelial
bladder carcinoma, Nature, 507, 315-322, doi:10.1038/
NATURE12965.
28. Jiang, Q., Zhou, J., Chen, Q., Huang, Y., Yang, C., and
Liu, C. (2023) Construction and experimental valida-
tion of a macrophage cell senescence-related gene sig-
nature to evaluate the prognosis, immunotherapeutic
sensitivity, and chemotherapy response in bladder
cancer, Funct. Integrat. Genomics, 23, 228, doi:10.1007/
S10142-023-01163-4.
29. Prieto, L. I., Sturmlechner, I., Graves, S. I., Zhang, C.,
Goplen, N. P., Yi, E.S., Sun,J., Li,H., and Baker, D.J.
(2023) Senescent alveolar macrophages promote ear-
ly-stage lung tumorigenesis, Cancer Cell, 41, 1261-
1275.e6, doi:10.1016/J.CCELL.2023.05.006.
30. Cuollo,L., Antonangeli,F., Santoni,A., and Soriani,A.
(2020) The senescence-associated secretory phenotype
(SASP) in the challenging future of cancer therapy
and age-related diseases, Biology, 9, 1-16, doi:10.3390/
BIOLOGY9120485.
31. Yurakova, T.R., Gorshkova, E.A., Nosenko, M.A., and
Drutskaya, M.S. (2024) Metabolic changes and func-
tional activity of macrophages in homeostasis and in
inflammation, Biochemistry (Moscow), 89, 817-838,
doi:10.1134/S0006297924050043.
32. Wu,K., Lin,K., Li,X., Yuan,X., Xu,P., Ni,P., and Xu,D.
(2020) Redefining tumor-associated macrophage
subpopulations and functions in the tumor microen-
vironment, Front. Immunol., 11, 1731, doi: 10.3389/
FIMMU.2020.01731.
33. Park, J. V., Chandra, R., Cai, L., Ganguly, D., Li, H.,
Toombs, J. E., Girard, L., Brekken, R. A., and Minna,
J.D. (2022) Tumor cells modulate macrophage pheno-
type in a novel invitro co-culture model of the NSCLC
tumor microenvironment, J.Thoracic Oncol., 17, 1178-
1191, doi:10.1016/J.JTHO.2022.06.011.
34. Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E.,
Krasnov, P., Virtuoso, L. P., Rydkina, E., Vujcic, S.,
Balan, K., Gitlin, I. I., Leonova, K. I., Consiglio, C. R.,
Gollnick, S. O., Chernova, O. B., and Gudkov, A. V.
(2017) p16(Ink4a) and senescence-associated β-galac-
tosidase can be induced in macrophages as part of a
reversible response to physiological stimuli, Aging, 9,
1867-1884, doi:10.18632/aging.101268.
35. Korneev, K. V., Kondakova, A. N., Sviriaeva, E. N.,
Mitkin, N. A., Palmigiano, A., Kruglov, A. A., Telegin,
G.B., Drutskaya, M.S., Sturiale,L., Garozzo,D., Nedo-
spasov, S. A., Knirel, Y. A., and Kuprash, D.V. (2018)
Hypoacylated LPS from foodborne pathogen Cam-
pylobacter jejuni induces moderate TLR4-mediated
inflammatory response in murine macrophages,
Front. Cellular Infect. Microbiol., 8, 58, doi: 10.3389/
FCIMB.2018.00058.
36. Cudejko, C., Wouters, K., Fuentes, L., Hannou, S. A.,
Paquet,C., Bantubungi,K., Bouchaert,E., Vanhoutte,J.,
Fleury,S., Remy,P., Tailleux,A., Chinetti-Gbaguidi,G.,
Dombrowicz, D., Staels, B., and Paumelle, R. (2011)
PUKHALSKAIA et al.848
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
p16INK4a deficiency promotes IL-4-induced polar-
ization and inhibits proinflammatory signaling in
macrophages, Blood, 118, 2556-2566, doi: 10.1182/
BLOOD-2010-10-313106.
37. Lechner, A., Henkel, F. D. R., Hartung, F., Bohnack-
er,S., Alessandrini,F., Gubernatorova, E.O., Drutska-
ya, M.S., Angioni,C., Schreiber,Y., Haimerl,P., Ge,Y.,
Thomas,D., Kabat, A. M., Pearce, E.J., Ohnmacht,C.,
Nedospasov, S.A., Murray, P.J., Chaker, A.M., Schmidt-
Weber, C. B., and Esser-von Bieren, J. (2022) Macro-
phages acquire a TNF-dependent inflammatory mem-
ory in allergic asthma, J.Allergy Clin. Immunol., 149,
2078-2090, doi:10.1016/J.JACI.2021.11.026.
38. Rackov,G., Hernández-Jiménez,E., Shokri,R., Carmona-
Rodríguez, L., Mañes, S., Álvarez-Mon, M., López-
Collazo, E., Martínez-A, C., and Balomenos, D. (2016)
P21 mediates macrophage reprogramming through
regulation of p50-p50 NF-κB and IFN-β, J.Clin. Invest.,
126, 3089-3103, doi:10.1172/JCI83404.
39. Wang, L. X., Zhang, S. X., Wu, H. J., Rong, X. L., and
Guo, J. (2019) M2b macrophage polarization and
its roles in diseases, J. Leukoc. Biol., 106, 345-358,
doi:10.1002/JLB.3RU1018-378RR.
40. Yuan,A., Hsiao, Y.J., Chen, H.Y., Chen, H.W., Ho, C.C.,
Chen, Y.Y., Liu, Y.C., Hong, T.H., Yu, S.L., Chen, J.J.,
and Yang, P.C. (2015) Opposite effects of M1 and M2
macrophage subtypes on lung cancer progression, Sci.
Rep., 5, 14273, doi:10.1038/SREP14273.
41. Luque-Campos, N., Bustamante-Barrientos, F.A., Pra-
denas,C., García,C., Araya, M.J., Bohaud,C., Contreras-
López, R., Elizondo-Vega, R., Djouad, F., Luz-Craw-
ford,P., and Vega-Letter, A.M. (2021) The macrophage
response is driven by mesenchymal stem cell-medi-
ated metabolic reprogramming, Front. Immunol., 12,
624746, doi:10.3389/FIMMU.2021.624746.
42. De Paoli,F., Staels,B., and Chinetti-Gbaguidi,G. (2014)
Macrophage phenotypes and their modulation in
atherosclerosis, Circ. J., 78, 1775-1781, doi: 10.1253/
CIRCJ.CJ-14-0621.
43. Zhang, F., Miao, Y., Liu, Q., Li, S., and He, J. (2020)
Changes of pro-inflammatory and anti-inflammatory
macrophages after peripheral nerve injury, RSC Adv.,
10, 38767-38773, doi:10.1039/D0RA06607A.
44. Su, L., Dong, Y., Wang, Y., Wang, Y., Guan, B., Lu, Y.,
Wu,J., Wang,X., Li,D., Meng,A., and Fan,F. (2021) Po-
tential role of senescent macrophages in radiation-in-
duced pulmonary fibrosis, Cell Death Dis., 12, 527,
doi:10.1038/S41419-021-03811-8.
45. Sadhu,S., Decker,C., Sansbury, B.E., Marinello,M., Sey-
fried,A., Howard,J., Mori,M., Hosseini,Z., Arunacha-
lam,T., Finn, A.V., Lamar, J.M., Jourd’heuil,D., Guo,L.,
MacNamara, K.C., Spite, M., and Fredman, G. (2021)
Radiation-induced macrophage senescence impairs
resolution programs and drives cardiovascular in-
flammation, J.Immunol., 207, 1812-1823, doi:10.4049/
JIMMUNOL.2100284.
46. De Maeyer, R.P.H., and Chambers, E.S. (2021) The im-
pact of ageing on monocytes and macrophages, Immu-
nol. Lett., 230, 1-10, doi:10.1016/J.IMLET.2020.12.003.
47. Seegren, P.V., Harper, L.R., Downs, T.K., Zhao, X.Y.,
Viswanathan, S.B., Stremska, M.E., Olson, R.J., Kenne-
dy,J., Ewald, S.E., Kumar,P., and Desai, B.N. (2023) Re-
duced mitochondrial calcium uptake in macrophages
is a major driver of inflammaging, Nat. Aging, 3,
796-812, doi:10.1038/S43587-023-00436-8.
48. Wang, B., Wang, L., Gasek, N. S., Zhou, Y., Kim, T.,
Guo,C., Jellison, E.R., Haynes,L., Yadav,S., Tchkonia,T.,
Kuchel, G.A., Kirkland, J.L., and Xu,M. (2021) An in-
ducible p21-Cre mouse model to monitor and manipu-
late p21-highly-expressing senescent cells invivo, Nat.
Aging, 1, 962-973, doi:10.1038/S43587-021-00107-6.
49. Hall, B.M., Balan,V., Gleiberman, A.S., Strom,E., Kras-
nov,P., Virtuoso, L.P., Rydkina,E., Vujcic,S., Balan,K.,
Gitlin,I., Leonova,K., Polinsky,A., Chernova, O.B., and
Gudkov, A.V. (2016) Aging of mice is associated with
p16(Ink4a)- and β-galactosidase-positive macrophage
accumulation that can be induced in young mice by
senescent cells, Aging, 8, 1294-1315, doi: 10.18632/
AGING.100991.
50. Liu, J.Y., Souroullas, G.P., Diekman, B.O., Krishnamur-
thy, J., Hall, B. M., Sorrentino, J. A., Parker, J.S., Ses-
sions, G.A., Gudkov, A.V., and Sharpless, N.E. (2019)
Cells exhibiting strong p16INK4a promoter activation
in vivo display features of senescence, Proc. Natl.
Acad. Sci. USA, 116, 2603-2611, doi: 10.1073/PNAS.
1818313116.
51. Yousefzadeh, M.J., Flores, R.R., Zhu,Y., Schmiechen,
Z.C., Brooks, R.W., Trussoni, C.E., Cui,Y., Angelini,L.,
Lee, K. A., McGowan, S. J., Burrack, A. L., Wang, D.,
Dong, Q., Lu, A., Sano, T., O’Kelly, R. D., McGuckian,
C.A., Kato, J.I., Bank, M.P., Wade, E.A., Pillai, S.P.S.,
Klug,J., Ladiges, W.C., Burd, C.E., Lewis, S.E., LaRus-
so, N. F., Vo, N. V., Wang, Y., Kelley, E. E., Huard, J.,
Stromnes, I.M., Robbins, P.D., and Niedernhofer, L.J.
(2021) An aged immune system drives senescence
and ageing of solid organs, Nature, 594, 100-105,
doi:10.1038/s41586-021-03547-7.
52. Renshaw, M., Rockwell, J., Engleman, C., Gewirtz, A.,
Katz, J., and Sambhara, S. (2002) Cutting edge: im-
paired Toll-like receptor expression and function
in aging, J. Immunol., 169, 4697-4701, doi: 10.4049/
JIMMUNOL.169.9.4697.
53. Wada,H., Otsuka,R., Germeraad, W.T.V., Murata,T.,
Kondo,T., and Seino, K.I. (2023) Tumor cell-induced
macrophage senescence plays a pivotal role in tumor
initiation followed by stable growth in immunocom-
petent condition, J.Immunother. Cancer, 11, e006677,
doi:10.1136/JITC-2023-006677.
54. Li,X., Li,C., Zhang,W., Wang,Y., Qian,P., and Huang,H.
(2023) Inflammation and aging: signaling pathways
and intervention therapies, Signal Transduct. Target.
Ther., 8, 239, doi:10.1038/S41392-023-01502-8.
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 849
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
55. Moss, C.E., Phipps,H., Wilson, H.L., and Kiss-Toth,E.
(2023) Markers of the ageing macrophage: a system-
atic review and meta-analysis, Front. Immunol., 14,
1222308, doi:10.3389/FIMMU.2023.1222308.
56. Guo, Z., Song, J., Hao, J., Zhao, H., Du, X., Li, E.,
Kuang,Y., Yang, F., Wang, W., Deng, J., and Wang, Q.
(2019) M2 macrophages promote NSCLC metastasis
by upregulating CRYAB, Cell Death Disease, 10, 377,
doi:10.1038/S41419-019-1618-X.
57. Cao,L., Che,X., Qiu,X., Li,Z., Yang,B., Wang,S., Hou,K.,
Fan,Y., Qu,X., and Liu,Y. (2019) M2 macrophage in-
filtration into tumor islets leads to poor prognosis
in non-small-cell lung cancer, Cancer Manag. Res.,
11, 6125-6138, doi:10.2147/CMAR.S199832.
58. Hojnik,M., Šuster, N.K., Smrkolj,Š., Sisinger,D., Grazio,
S. F., Verdenik, I., and Rižner, T. L. (2022) AKR1B1 as
a prognostic biomarker of high-grade serous ovarian
cancer, Cancers, 14, 809, doi:10.3390/cancers14030809.
59. Yamaguchi,Y., Kaida,K., Suenaga,Y., Ishigami,A., Ko-
bayashi,Y., and Nagata,K. (2020) Age-related dysfunc-
tion of p53-regulated phagocytic activity in macro-
phages, Biochem. Biophys. Res. Commun., 529, 462-466,
doi:10.1016/J.BBRC.2020.05.121.
60. Fan,Y., Cheng,J., Zeng,H., and Shao,L. (2020) Senes-
cent cell depletion through targeting BCL-family pro-
teins and mitochondria, Front. Physiol., 11, 593630,
doi:10.3389/FPHYS.2020.593630.
61. Burd, C. E., Sorrentino, J. A., Clark, K.S., Darr, D. B.,
Krishnamurthy,J., Deal, A.M., Bardeesy,N., Castrillon,
D.H., Beach, D.H., and Sharpless, N.E. (2013) Moni-
toring tumorigenesis and senescence in vivo with
a p16(INK4a)-luciferase model, Cell, 152, 340-351,
doi:10.1016/J.CELL.2012.12.010.
62. Grosse, L., Wagner, N., Emelyanov, A., Molina, C.,
Lacas- Gervais, S., Wagner, K. D., and Bulavin, D. V.
(2020) Defined p16High senescent cell types are indis-
pensable for mouse healthspan, Cell Metab., 32, 87-99.
e6, doi:10.1016/J.CMET.2020.05.002.
63. Wiley, C.D., and Campisi,J. (2021) The metabolic roots
of senescence: mechanisms and opportunities for in-
tervention, Nat. Metab., 3, 1290-1301, doi: 10.1038/
S42255-021-00483-8.
64. Marrella,V., Facoetti,A., and Cassani,B. (2022) Cellu-
lar senescence in immunity against infections, Int. J.
Mol. Sci., 23, 11845, doi:10.3390/IJMS231911845.
65. Van den Bossche,J., Baardman,J., Otto, N.A., van der
Velden, S., Neele, A. E., van den Berg, S. M., Luque-
Martin, R., Chen, H. J., Boshuizen, M. C., Ahmed, M.,
Hoeksema, M.A., de Vos, A.F., and de Winther, M.P.
(2016) Mitochondrial dysfunction prevents repolar-
ization of inflammatory macrophages, Cell Rep., 17,
684-696, doi:10.1016/J.CELREP.2016.09.008.
66. Van den Bossche,J., O’Neill, L.A., and Menon,D. (2017)
Macrophage immunometabolism: where are we
(going)? Trends Immunol., 38, 395-406, doi: 10.1016/
J.IT.2017.03.001.
67. Shi,Q., Shen,Q., Liu,Y., Shi, Y., Huang,W., Wang, X.,
Li, Z., Chai, Y., Wang, H., Hu, X., Li, N., Zhang, Q.,
and Cao, X. (2022) Increased glucose metabolism in
TAMs fuels O-GlcNAcylation of lysosomal Cathep-
sin B to promote cancer metastasis and chemoresis-
tance, Cancer Cell, 40, 1207-1222.e10, doi: 10.1016/
J.CCELL.2022.08.012.
68. Liu,J., and Cao,X. (2023) Glucose metabolism of TAMs
in tumor chemoresistance and metastasis, Trends Cell
Biol., 33, 967-978, doi:10.1016/J.TCB.2023.03.008.
69. Stabenow, L.K., Zibrova,D., Ender,C., Helbing, D.L.,
Spengler,K., Marx,C., Wang, Z.Q., and Heller,R. (2022)
Oxidative glucose metabolism promotes senescence in
vascular endothelial cells, Cells, 11, 2213, doi:10.3390/
CELLS11142213.
70. Seo,E., Kang,H., Choi,H., Choi,W., and Jun, H.S. (2019)
Reactive oxygen species-induced changes in glucose
and lipid metabolism contribute to the accumulation
of cholesterol in the liver during aging, Aging Cell, 18,
e12895, doi:10.1111/ACEL.12895.
71. Bonnet,L., Alexandersson,I., Baboota, R.K., Kroon,T.,
Oscarsson,J., Smith,U., and Boucher,J. (2022) Cellular
senescence in hepatocytes contributes to metabolic
disturbances in NASH, Front. Endocrinol., 13, 957616,
doi:10.3389/FENDO.2022.957616.
72. Murao,N., Yokoi,N., Takahashi, H., Hayami, T., Min-
ami, Y., and Seino, S. (2022) Increased glycolysis af-
fects β-cell function and identity in aging and diabe-
tes, Mol. Metab., 55, 101414, doi: 10.1016/J.MOLMET.
2021.101414.
73. Murakami,T., Inagaki,N., and Kondoh,H. (2022) Cel-
lular senescence in diabetes mellitus: distinct seno-
therapeutic strategies for adipose tissue and pancre-
atic β cells, Front. Endocrinol., 13, 869414, doi:10.3389/
FENDO.2022.869414.
74. Poisa-Beiro,L., Landry, J.J.M., Raffel,S., Tanaka,M.,
Zaugg, J., Gavin, A. C., and Ho, A. D. (2022) Glucose
metabolism and aging of hematopoietic stem and
progenitor cells, Int.J. Mol. Sci., 23, 3028, doi:10.3390/
IJMS23063028.
75. Lee, J.C., Kim, G.C., Lee, N.K., Kim, S.W., Cho, Y.S.,
Chung, S.W., Lee, Y.S., Chang, H.W., Byun,Y., and Kim,
S.Y. (2022) Feedback amplification of senolysis using
caspase-3-cleavable peptide-doxorubicin conjugate
and 2DG, J. Controll. Rel., 346, 158-168, doi: 10.1016/
j.jconrel.2022.04.012.
76. Camacho-Pereira, J., Tarragó, M. G., Chini, C. C. S.,
Nin, V., Escande, C., Warner, G. M., Puranik, A. S.,
Schoon, R.A., Reid, J.M., Galina,A., and Chini, E.N.
(2016) CD38 dictates age-related NAD decline and mi-
tochondrial dysfunction through an SIRT3-dependent
mechanism, Cell Metab., 23, 1127-1139, doi: 10.1016/
J.CMET.2016.05.006.
77. Xie, N., Zhang, L., Gao, W., Huang, C., Huber, P. E.,
Zhou, X., Li, C., Shen, G., and Zou, B. (2020) NAD
+
metabolism: pathophysiologic mechanisms and
PUKHALSKAIA et al.850
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
therapeutic potential, Signal Transduct. Target. Ther.,
5, 227, doi:10.1038/S41392-020-00311-7.
78. Gomes, A. P., Price, N. L., Ling, A. J.Y., Moslehi, J. J.,
Montgomery, M. K., Rajman,L., White, J.P., Teodoro,
J. S., Wrann, C. D., Hubbard, B. P., Mercken, E. M.,
Palmeira, C.M., de Cabo,R., Rolo, A.P., Turner,N., Bell,
E.L., and Sinclair, D.A. (2013) Declining NAD
+
induces
a pseudohypoxic state disrupting nuclear-mitochon-
drial communication during aging, Cell, 155, 1624-
1638, doi:10.1016/J.CELL.2013.11.037.
79. Du,Y., Dai,Q., Zhang,H., Li,Q., Song,K., Fu,Y., Min,W.,
Liu, Z., and Li, R. (2019) CD38 deficiency downregu-
lates the onset and pathogenesis of collagen-induced
arthritis through the NF-κB pathway, J.Immunol. Res.,
2019, 7026067, doi:10.1155/2019/7026067.
80. Salminen, A., Kauppinen, A., and Kaarniranta, K.
(2012) Emerging role of NF-κB signaling in the in-
duction of senescence-associated secretory pheno-
type (SASP), Cell. Signall., 24, 835-845, doi: 10.1016/
J.CELLSIG.2011.12.006.
81. Vitale,I., Manic,G., Coussens, L.M., Kroemer,G., and
Galluzzi, L. (2019) Macrophages and metabolism in
the tumor microenvironment, Cell Metab., 30, 36-50,
doi:10.1016/J.CMET.2019.06.001.
82. Tedesco, S., Scattolini, V., Albiero, M., Bortolozzi, M.,
Avogaro,A., Cignarella,A., and Fadini, G.P. (2019) Mi-
tochondrial calcium uptake is instrumental to alterna-
tive macrophage polarization and phagocytic activity,
Int.J. Mol. Sci., 20, 4966, doi:10.3390/IJMS20194966.
83. Baker, D.J., Childs, B.G., Durik,M., Wijers, M.E., Sie-
ben, C.J., Zhong,J., Saltness, R. A., Jeganathan, K.B.,
Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D.,
and van Deursen, J.M. (2016) Naturally occurring p16
Ink4a-positive cells shorten healthy lifespan, Nature,
530, 184-189, doi:10.1038/nature16932.
84. Hickson, L. T. J., Langhi Prata, L. G.P., Bobart, S. A.,
Evans, T.K., Giorgadze,N., Hashmi, S.K., Herrmann,
S.M., Jensen, M.D., Jia,Q., Jordan, K.L., Kellogg, T.A.,
Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson,
D.K., LeBrasseur, N.K., Lerman, L.O., McDonald, K.M.,
McKenzie, T.J., Passos, J.F., Pignolo, R.J., Pirtskhala-
va, T., Saadiq, I. M., Schaefer, K. K., Textor, S.C., Vic-
torelli, S.G., Volkman, T.L., Xue,A., Wentworth, M.A.,
Wissler Gerdes, E.O., Zhu,Y., Tchkonia,T., and Kirk-
land, J. L. (2019) Senolytics decrease senescent cells
in humans: preliminary report from a clinical trial
of Dasatinib plus Quercetin in individuals with di-
abetic kidney disease, EBioMedicine, 47, 446-456,
doi:10.1016/J.EBIOM.2019.08.069.
85. Cao,H., Jia,Q., Yan,L., Chen,C., Xing,S., and Shen,D.
(2019) Quercetin suppresses the progression of ath-
erosclerosis by regulating MST1-mediated autophagy
in ox-LDL-induced RAW264.7 macrophage foam cells,
Int.J. Mol. Sci., 20, 6093, doi:10.3390/IJMS20236093.
86. Su,W., Hu,Y., Fan,X., and Xie,J. (2023) Clearance of
senescent cells by navitoclax (ABT263) rejuvenates
UHMWPE-induced osteolysis, Int. Immunopharmacol.,
115, 109694, doi:10.1016/J.INTIMP.2023.109694.
87. Ramsey, H. E., Gorska, A. E., Smith, B. N., Monteith,
A.J., Fuller,L., Arrate, M.P., and Savona, M.R. (2023)
TLR3 agonism augments CD47 inhibition in acute
myeloid leukemia, Haematologica, doi: 10.3324/
HAEMATOL.2023.283850.
88. Liu, L., Yue, X., Sun, Z., Hambright, W. S., Feng, Q.,
Cui,Y., Huard,J., Robbins, P.D., Wang,Z., and Mu,X.
(2022) Senolytic elimination of senescent macro-
phages restores muscle stem cell function in severely
dystrophic muscle, Aging, 14, 7650-7661, doi:10.18632/
aging.204275.
89. Zhao, J., Zhang, L., Mu, X., Doebelin, C., Doebelin, C.,
Nguyen, W., Wallace, C., Reay, D. P., McGowan, S. J.,
Corbo,L., Clemens, P.R., Wilson, G.M., Watkins, S.C.,
Solt, L. A., Cameron, M. D., Huard, J., Niedernhofer,
L.J., Kamenecka, T.M., and Robbins, P.D. (2018) De-
velopment of novel NEMO-binding domain mimetics
for inhibiting IKK/NF-κB activation, PLoS Biol., 16,
e2004663, doi:10.1371/JOURNAL.PBIO.2004663.
90. Zhang,L., Zhao,J., Mu,X., McGowan, S.J., Angelini,L.,
O’Kelly, R.D., Yousefzadeh, M. J., Sakamoto,A., Aver-
sa, Z., LeBrasseur, N. K., Suh, Y., Huard, J., Kamenec-
ka, T.M., Niedernhofer, L.J., and Robbins, P.D. (2021)
Novel small molecule inhibition of IKK/NF-κB acti-
vation reduces markers of senescence and improves
healthspan in mouse models of aging, Aging Cell,
20, e13486, doi:10.1111/ACEL.13486.
91. Ji,X., Du,W., Che,W., Wang,L., and Zhao,L. (2023) Api-
genin inhibits the progression of osteoarthritis by me-
diating macrophage polarization, Molecules, 28, 2915,
doi:10.3390/MOLECULES28072915.
92. Perrott, K. M., Wiley, C.D., Desprez, P. Y., and Camp-
isi, J. (2017) Apigenin suppresses the senescence-as-
sociated secretory phenotype and paracrine effects
on breast cancer cells, GeroScience, 39, 161-173,
doi:10.1007/S11357-017-9970-1.
93. Deryabin, P. I., Shatrova, A. N., and Borodkina, A. V.
(2021) Apoptosis resistance of senescent cells is an
intrinsic barrier for senolysis induced by cardiac gly-
cosides, Cell. Mol. Life Sci., 78, 7757-7776, doi:10.1007/
S00018-021-03980-X.
94. Triana-Martínez, F., Picallos-Rabina, P., Da Silva-
Álvarez, S., Pietrocola, F., Llanos, S., Rodilla, V., So-
prano, E., Pedrosa, P., Ferreirós, A., Barradas, M.,
Hernández-González, F., Lalinde, M., Prats, N., Ber-
nadó, C., González, P., Gómez, M., Ikonomopoulou,
M.P., Fernández-Marcos, P.J., García-Caballero,T., Del
Pino,P., Arribas,J., Vidal,A., González-Barcia,M., Ser-
rano,M., Loza, M. I., Domínguez, E., and Collado, M.
(2019) Identification and characterization of Cardiac
Glycosides as senolytic compounds, Nat. Commun., 10,
4731, doi:10.1038/S41467-019-12888-X.
95. Yu, Z., Li, Y., Li, Y., Zhang, J., Li, M., Ji, L., Tang, Y.,
Zheng, Y., Sheng, J., Han, Q., Li, F., Guo, J., Wang, L.,
TUMOR-ASSOCIATED SENESCENT MACROPHAGES 851
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
Sun,X., Gao,Y., and Feng,H. (2022) Bufalin stimulates
antitumor immune response by driving tumor-in-
filtrating macrophage toward M1 phenotype in he-
patocellular carcinoma, J. Immunother. Cancer, 10,
e004297, doi:10.1136/JITC-2021-004297.
96. Chen, Y.J., Li, G.N., Li, X.J., Wei, L.X., Fu, M.J., Cheng,
Z.L., Yang,Z., Zhu, G.Q., Wang, X.D., Zhang,C., Zhang,
J. Y., Sun, Y. P., Saiyin, H., Zhang, J., Liu, W. R., Zhu,
W.W., Guan, K.L., Xiong,Y., Yang,Y., Ye,D., and Chen,
L.L. (2023) Targeting IRG1 reverses the immunosup-
pressive function of tumor-associated macrophages
and enhances cancer immunotherapy, Sci. Adv., 9,
eadg0654, doi:10.1126/SCIADV.ADG0654.
97. Liu, Q., Yang, C., Wang, S., Shi, D., Wei, C., Song, J.,
Lin, X., Dou, R., Bai, J., Xiang, Z., Huang, S., Liu, K.,
and Xiong, B. (2020) Wnt5a-induced M2 polarization
of tumor-associated macrophages via IL-10 promotes
colorectal cancer progression, Cell Commun. Signal.,
18, 51, doi:10.1186/S12964-020-00557-2.
98. Binnewies, M., Pollack, J. L., Rudolph, J., Dash, S.,
Abushawish, M., Lee, T., Jahchan, N. S., Canaday, P.,
Lu, E., Norng, M., Mankikar, S., Liu, V. M., Du, X.,
Chen, A., Mehta, R., Palmer, R., Juric, V., Liang, L.,
Baker, K. P., Reyno, L., Krummel, M. F., Streuli, M.,
and Sriram, V. (2021) Targeting TREM2 on tumor-
associated macrophages enhances immunothera-
py, Cell Rep., 37, 109844, doi: 10.1016/J.CELREP.2021.
109844.
99. Wang,Q., Bergholz, J.S., Ding,L., Lin,Z., Kabraji, S.K.,
Hughes, M.E., He,X., Xie,S., Jiang,T., Wang, W., Zo-
eller, J. J., Kim, H. J., Roberts, T. M., Konstantinopou-
los, P. A., Matulonis, U. A., Dillon, D. A., Winer, E. P.,
Lin, N. U., and Zhao, J. J. (2022) STING agonism re-
programs tumor-associated macrophages and over-
comes resistance to PARP inhibition in BRCA1-defi-
cient models of breast cancer, Nat. Commun., 13, 3022,
doi:10.1038/S41467-022-30568-1.
100. Yang,H., Zhang,Q., Xu,M., Wang,L., Chen,X., Feng,Y.,
Li,Y., Zhang,X., Cui,W., and Jia,X. (2020) CCL2-CCR2
axis recruits tumor associated macrophages to induce
immune evasion through PD-1 signaling in esopha-
geal carcinogenesis, Mol. Cancer, 19, 41, doi:10.1186/
S12943-020-01165-X.
101. Jiang, Y., Han, Q., Zhao, H., and Zhang, J. (2021) Pro-
motion of epithelial-mesenchymal transformation
by hepatocellular carcinoma-educated macrophages
through Wnt2b/β-catenin/c-Myc signaling and repro-
gramming glycolysis, J. Exp. Clin. Cancer Res., 40, 13,
doi:10.1186/s13046-020-01808-3.
102. Benner, B., Scarberry, L., Suarez-Kelly, L. P., Duggan,
M.C., Campbell, A.R., Smith,E., Lapurga,G., Jiang,K.,
Butchar, J. P., Tridandapani, S., Howard, J. H., Baioc-
chi, R. A., Mace, T. A., and Carson, W. E. (2019) Gen-
eration of monocyte-derived tumor-associated mac-
rophages using tumor-conditioned media provides a
novel method to study tumor-associated macrophages
in vitro, J. Immunother. Cancer, 7, 140, doi: 10.1186/
s40425-019-0622-0.
103. Jeannin, P., Paolini, L., Adam, C., and Delneste, Y.
(2018) The roles of CSFs on the functional polariza-
tion of tumor-associated macrophages, FEBS J., 285,
680-699, doi:10.1111/febs.14343.
104. Enukashvily, N.I., Ponomartsev, N. V., Ketkar,A., Su-
ezov,R., Chubar, A.V., Prjibelski, A.D., Shafranskaya,
D.D., Elmshäuser,S., Keber, C.U., Stefanova, V.N., Ako-
pov, A. L., Klingmüller, U., Pfefferle, P. I., Stiewe, T.,
Lauth,M., and Brichkina, A.I. (2023) Pericentromer-
ic satellite lncRNAs are induced in cancer-associat-
ed fibroblasts and regulate their functions in lung
tumorigenesis, Cell Death Dis., 14, 19, doi: 10.1038/
s41419-023-05553-1.
105. Heap, R. E., Marín-Rubio, J. L., Peltier, J., Heunis, T.,
Dannoura,A., Moore,A., and Trost,M. (2021) Proteom-
ics characterisation of the L929 cell supernatant and
its role in BMDM differentiation, Life Sci. Alliance, 4,
e202000957, doi:10.26508/LSA.202000957.
106. De Brito Monteiro,L., Davanzo, G.G., de Aguiar, C.F.,
Corrêa da Silva, F., Andrade, J. R., Campos Codo, A.,
Silva Pereira, J.A.D., Freitas, L.P., and Moraes- Vieira,
P. M. (2020) M-CSF- and L929-derived macrophages
present distinct metabolic profiles with similar in-
flammatory outcomes, Immunobiology, 225, 151935,
doi:10.1016/j.imbio.2020.151935.
107. Xu, N.-Y., Li,J., Wang, M.L., Chen, X.Y., Tang,R., and
Liu, X. Q. (2024) Fabrication of a coculture organoid
model in the biomimetic matrix of alginate to in-
vestigate breast cancer progression in a TAMs-lead-
ing immune microenvironment, ACS Appl. Ma-
ter. Interf.,
16, 11275-11288, doi: 10.1021/ACSAMI.
3C17863.
108. Tashireva, L.A., Kalinchuk, A.Y., Gerashchenko, T.S.,
Menyailo, M., Khozyainova, A., Denisov, E. V., and
Perelmuter, V. M. (2023) Spatial profile of tumor mi-
croenvironment in PD-L1-negative and PD-L1-positive
triple-negative breast cancer, Int.J. Mol. Sci., 24, 1433,
doi:10.3390/IJMS24021433.
109. Mei,Y., Xiao,W., Hu,H., Lu,G., Chen,L., Sun,Z., Lü,M.,
Ma,W., Jiang,T., Gao,Y., Li,L., Chen,G., Wang,Z., Li,H.,
Wu,D., Zhou,P., Leng,Q., and Jia,G. (2021) Single-cell
analyses reveal suppressive tumor microenvironment
of human colorectal cancer, Clin. Translat. Med., 11,
e422, doi:10.1002/CTM2.422.
110. Krishna,C., DiNatale, R.G., Kuo,F., Srivastava, R. M.,
Vuong,L., Chowell,D., Gupta,S., Vanderbilt,C., Puro-
hit, T.A., Liu,M., Kansler,E., Nixon, B.G., Chen, Y.B.,
Makarov,V., Blum, K.A., Attalla,K., Weng,S., Salmans,
M. L., Golkaram, M., Liu, L., Zhang, S., Vijayaragha-
van, R., Pawlowski, T., Reuter, V., Carlo, M. I., Voss,
M. H., Coleman, J., Russo, P., Motzer, R. J., Li, M. O.,
Leslie, C.S., Chan, T.A., and Hakimi, A.A. (2021) Sin-
gle-cell sequencing links multiregional immune land-
scapes and tissue-resident T cells in ccRCC to tumor
PUKHALSKAIA et al.852
BIOCHEMISTRY (Moscow) Vol. 89 No. 5 2024
topology and therapy efficacy, Cancer Cell, 39, 662-
677.e6, doi:10.1016/J.CCELL.2021.03.007.
111. Yang,Q., Zhang,H., Wei,T., Lin,A., Sun,Y., Luo,P., and
Zhang, J. (2021) Single-cell RNA sequencing reveals
the heterogeneity of tumor-associated macrophage
in non-small cell lung cancer and differences be-
tween sexes, Front. Immunol., 12, 756722, doi:10.3389/
fimmu.2021.756722.
112. Stanczak, M. A., Mantuano, N. R., Kirchhammer, N.,
Sanin, D.E., Jacob, F., Coelho, R., Everest-Dass, A. V.,
Wang, J., Trefny, M. P., Monaco, G., Bärenwaldt, A.,
Gray, M.A., Petrone,A., Kashyap, A.S., Glatz,K., Kasen-
da,B., Normington,K., Broderick,J., Peng,L., Pearce,
O.M.T., Pearce, E.L., Bertozzi, C.R., Zippelius,A., and
Läubli,H. (2022) Targeting cancer glycosylation repo-
larizes tumor-associated macrophages allowing effec-
tive immune checkpoint blockade, Sci. Translat. Med.,
14, eabj1270, doi:10.1126/scitranslmed.abj1270.
113. Grigorash, B. B., van Essen, D., Liang, G., Grosse, L.,
Emelyanov, A., Kang, Z., Korablev, A., Kanzler, B.,
Molina, C., Lopez, E., Demidov, O. N., Garrido, C.,
Liu,F., Saccani, S., and Bulavin, D.V. (2023) p16High
senescence restricts cellular plasticity during somat-
ic cell reprogramming, Nat. Cell Biol., 25, 1265-1278,
doi:10.1038/S41556-023-01214-9.
114. Demaria, M., Ohtani, N., Youssef, S. A., Rodier, F.,
Toussaint, W., Mitchell, J. R., Laberge, R. M., Vijg, J.,
VanSteeg,H., Dollé, M.E., Hoeijmakers, J.H., de Bru-
in,A., Hara,E., and Campisi,J. (2014) An essential role for
senescent cells in optimal wound healing through se-
cretion of PDGF-AA, Dev. Cell, 31, 722-733, doi:10.1016/
J.DEVCEL.2014.11.012.
115. Omori, S., Wang, T. W., Johmura, Y., Kanai, T., Na-
kano, Y., Kido, T., Susaki, E. A., Nakajima, T., Shichi-
no,S., Ueha,S., Ozawa,M., Yokote,K., Kumamoto,S.,
Nishiyama, A., Sakamoto, T., Yamaguchi, K., Ha-
takeyama, S., Shimizu, E., Katayama, K., Yamada, Y.,
Yamazaki,S., Iwasaki,K., Miyoshi,C., Funato,H., Yan-
agisawa,M., Ueno,H., Imoto,S., Furukawa,Y., Yoshi-
da,N., Matsushima,K., Ueda, H.R., Miyajima,A., and
Nakanishi, M. (2020) Generation of a p16 reporter
mouse and its use to characterize and target p16high
cells in vivo, Cell Metab., 32, 814-828.e6, doi:10.1016/
J.CMET.2020.09.006.
116. Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur,
N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L.,
and van Deursen, J. M. (2011) Clearance of p16
Ink4a-positive senescent cells delays ageing-associ-
ated disorders, Nature, 479, 232-236, doi: 10.1038/
nature10600.
Publishers Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.