
PETUSHKOV et al.2272
BIOCHEMISTRY (Moscow) Vol. 89 Nos. 12-13 2024
Ferreira, M. A., Jockusch, S., Wang, X., et al. (2021)
In vitro antiviral activity of the anti-HCV drugs da-
clatasvir and sofosbuvir against SARS-CoV-2, the aeti-
ological agent of COVID-19, J.Antimicrob. Chemother.,
76,1874-1885, https://doi.org/10.1093/jac/dkab072.
13. Jockusch,S., Tao,C., Li, X., Chien,M., Kumar, S., Mo-
rozova,I., Kalachikov,S., Russo, J.J., and Ju,J. (2020)
Sofosbuvir terminated RNA is more resistant to SARS-
CoV-2 proofreader than RNA terminated by Rem-
desivir, Sci. Rep., 10, 16577, https://doi.org/10.1038/
s41598-020-73641-9.
14. Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C.,
Seitz,F., Schmitzova,J., Farnung,L., Siewert,A., Ho-
bartner, C., and Cramer, P. (2021) Mechanism of
SARS-CoV-2 polymerase stalling by remdesivir, Nat.
Commun., 12, 279, https://doi.org/10.1038/s41467-
020-20542-0.
15. Yin, W. M. C., Luan,X., Shen, D. D., Shen, Q., Su,H.,
Wang,X., Zhou,F., Zhao, W., Gao,M., Chang, S., Xie,
Y.C., Tian,G., Jiang, H.W., Tao, S.C., Shen,J., Jiang,Y.,
Jiang, H., Xu, Y., Zhang, S., Zhang, Y., and Xu, H. E.
(2020) Structural basis for inhibition of the RNA-de-
pendentRNA polymerase from SARS-CoV-2 by remde-
sivir, Science, 368, 1499-1504, https://doi.org/10.1126/
science.abc1560.
16. Kabinger, F. S. C., Schmitzová, J., Dienemann, C.,
Kokic,G., Hillen, H.S., Höbartner,C., and Cramer, P.
(2021) Mechanism of molnupiravir-induced SARS-
CoV-2 mutagenesis, Nat. Struct. Mol. Biol., 28, 740-746,
https://doi.org/10.1038/s41594-021-00651-0.
17. Wang, J., Shi, Y., Reiss, K., Maschietto, F., Lolis, E.,
Konigsberg, W.H., Lisi, G.P., and Batista, V.S. (2022)
Structural insights into binding of remdesivir triphos-
phate within the replication–transcription complex
of SARS-CoV-2, Biochemistry, 61, 1966-1973, https://
doi.org/10.1021/acs.biochem.2c00341.
18. Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry,
J.K., Feng, J.Y., Porter, D.P., and Götte,M. (2020) Rem-
desivir is a direct-acting antiviral that inhibits RNA-
dependent RNA polymerase from severe acute respi-
ratory syndrome coronavirus 2 with high potency,
J.Biol. Chem., 295, 6785-6797, https://doi.org/10.1074/
jbc.RA120.013679.
19. Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F., and
Götte, M. (2021) Molnupiravir promotes SARS-CoV-2
mutagenesis via the RNA template, J.Biol. Chem., 297,
100770, https://doi.org/10.1016/j.jbc.2021.100770.
20. Tchesnokov, E. P., Gordon, C. J., Woolner, E.,
Kocinkova,D., Perry, J.K., Feng, J.Y., Porter, D.P., and
Götte, M. (2020) Template-dependent inhibition of
coronavirus RNA-dependent RNA polymerase by rem-
desivir reveals a second mechanism of action, J.Biol.
Chem., 295, 16156-16165, https://doi.org/10.1074/
jbc.AC120.015720.
21. Luo,X., Wang,X., Yao,Y., Gao,X., and Zhang,L. (2022)
Unveiling the “template-dependent” inhibition on
the viral transcription of SARS-CoV-2, J. Phys. Chem.
Lett., 13, 7197-7205, https://doi.org/10.1021/acs.jpclett.
2c01314.
22. Apostle, A., Yin, Y., Chillar, K., Eriyagama, A.,
Arneson, R., Burke, E., Fang, S., and Yuan, Y. (2023)
Effects of epitranscriptomic RNA modifications on
the catalytic activity of the SARS-CoV-2 replication
complex, Chembiochem, 24, e202300095, https://
doi.org/10.1002/cbic.202300095.
23. Iyer, L.M., and Aravind,L. (2012) Insights from the
architecture of the bacterial transcription apparatus,
J. Struct. Biol., 179, 299-319, https://doi.org/10.1016/
j.jsb.2011.12.013.
24. Steitz, T. A. (1998) A mechanism for all polymerases,
Nature, 391, 231-232, https://doi.org/10.1038/34542.
25. Sosunov, V., Sosunova, E., Mustaev, A., Bass, I.,
Nikiforov,V., and Goldfarb,A. (2003) Unified two-met-
al mechanism of RNA synthesis and degradation by
RNA polymerase, EMBO J., 22, 2234-2244, https://
doi.org/10.1093/emboj/cdg193.
26. James, K., Gamba, P., Cockell, S. J., and Zenkin, N.
(2017) Misincorporation by RNA polymerase is a
major source of transcription pausing invivo, Nucle-
ic Acids Res., 45, 1105-1113, https://doi.org/10.1093/
nar/gkw969.
27. Imashimizu, M., Oshima, T., Lubkowska, L., and
Kashlev,M. (2013) Direct assessment of transcription
fidelity by high-resolution RNA sequencing, Nucleic
Acids Res., 41, 9090-9104, https://doi.org/10.1093/nar/
gkt698.
28. Mäkinen, J., Shin, Y., Vieras, E., Virta, P., Metsä-
Ketelä, M., Murakami, K., and Belogurov, G. (2021)
The mechanism of the nucleo-sugar selection by
multi-subunit RNA polymerases, Nat. Commun., 12,
796, https://doi.org/10.1038/s41467-021-21005-w.
29. Nedialkov, Y. A., and Burton, Z. F. (2013) Transloca-
tion and fidelity of Escherichia coli RNA polymerase,
Transcription, 4, 136-143, https://doi.org/10.4161/
trns.25527.
30. Nudler, E., Gusarov, I., and Bar-Nahum, G. (2003)
Methods of Walking with the RNA Polymerase, in
Methods in Enzymology, Academic Press, pp.160-169,
https://doi.org/10.1016/S0076-6879(03)71011-8.
31. Agapov, A., Olina, A., and Kulbachinskiy, A. (2022)
RNA polymerase pausing, stalling and bypass
during transcription of damaged DNA: from mo-
lecular basis to functional consequences, Nucle-
ic Acids Res., 50, 3018-3041, https://doi.org/10.1093/
nar/gkac174.
32. Gehring, A.M., and Santangelo, T.J. (2017) Archaeal
RNA polymerase arrests transcription at DNA lesions,
Transcription, 8, 288-296, https://doi.org/10.1080/21541
264.2017.1324941.
33. Pupov,D., Ignatov,A., Agapov,A., and Kulbachinskiy,A.
(2019) Distinct effects of DNA lesions on RNA synthesis
by Escherichia coli RNA polymerase, Biochem. Biophys.