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Abstract— Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool 

for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to ob-

tain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related 

to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the 

main advantage of autologous iPSC-derivatives – lack of immunogenicity – still casts doubt on the possibility of 

using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties 

of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their 

immune tolerance. 
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INTRODUCTION

Human pluripotent stem cells (PSCs), which in-

clude embryonic stem cells (ESCs) and induced plu-

ripotent stem cells (iPSCs), can unlimitedly proliferate, 

and differentiate into almost any type of somatic cells 

[1,  2]. These unique properties make them an attrac-

tive and promising tool for modeling various diseases 

and drug development [3, 4]. Hopes are pinned on dif-

ferentiated derivatives of PSCs as a source of materi-

al for cell therapy, which should solve the problem of 

shortage of donor organs and tissues [5].

It is still too early to discuss widespread introduc-

tion of the PSC technology into clinical practice. Only 

26  years have passed since the discovery of human 

ESCs in 1998 [1], and active work is currently ongoing 

to improve protocols for differentiating PSCs into spe-

cialized cells and obtaining three-dimensional struc-

tured tissues in  vitro [4]. Another stumbling block to 

integrating PSCs into the clinic is high cost of the tech-

nology. According to the recent estimate, generating 

a clinical grade iPSCs line under good manufacturing 

practice (GMP) costs approximately U$800,000 [4]. An-

other limiting factor is long time required to obtain a 

new iPSC line and its subsequent differentiation into 

the desired cell type [6]. Additionally, there are cur-

rently no developed standardization parameters that 

would be applied to both iPSCs [7] and their differ-
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entiated derivatives [8]. Thus, at least in the coming 

years, patient-specific iPSC-based therapy is unlikely 

to become widespread. Interestingly, almost half of the 

clinical trials of PSC-derivatives used cell products de-

rived from only five ESC lines; however, the number 

of studies of cells derived from iPSCs has increased 

significantly over the past few years [9]. According to 

the Federal Law No.  180, using ESCs to develop, pro-

duce, and apply biomedical cell products is prohibited 

in Russia. Therefore, only iPSC-derivatives can be used 

in clinical practice.

Despite the obvious economic advantages asso-

ciated with production and “scaling-up” of allogeneic 

PSC-derivatives, the issue of immune rejection remains 

unresolved due to the high polymorphism of the genes 

of the major histocompatibility complex (HLA). To pre-

vent immune rejection during allogeneic tissue and 

organ transplantation, patients must undergo lifelong 

immunosuppressive treatment and its associated side 

effects [10]. Initially, it was believed that personalized 

therapy based on autologous iPSC-derivatives could cir-

cumvent the problem of histocompatibility [11]. How-

ever, some researchers report that immune response 

against the syngeneic and autologous iPSCs is still 

possible, which casts doubt on the main advantage 

of autologous iPSCs – lack of immunogenicity [12-15]. 

The reasons for this phenomenon have yet to be thor-

oughly studied. In this review, we tried to shed light 

on the mechanisms of impaired immune tolerance 

to autologous iPSCs. It is worth emphasizing that un-

derstanding effects of the significant immune effector 

cells  – T and NK-cells  – on various types of cells and, 

in  the long-term perspective, tissues derived from 

iPSCs will help to find approaches to their suppres-

sion and will be of great importance for successful de-

velopment of translational medicine.

IMMUNOGENICITY OF SYNGENEIC 
AND AUTOLOGOUS iPSCs 

AND THEIR DERIVATIVES TOWARD T-CELLS

The possibility that cells differentiated from au-

tologous iPSCs can provoke an immune response was 

widely considered only after the publication of Zhao 

et al. [12]. In this study, the authors showed that sub-

cutaneous administration of iPSCs to syngeneic, i.e., 

linear, mice led to formation of teratomas, where T-cell 

infiltration zones were found. Moreover, the process 

was accompanied by subsequent necrosis and regres-

sion of the resulting teratomas. At the same time, ter-

atomas formed after administration of the syngeneic 

ESCs with the same genetic background caused an 

immune response much less often. The authors not-

ed that the teratomas from iPSCs were rarely rejected 

when episomal reprogramming was used. However, 

in this case, the formed teratomas were rejected with 

the frequency of 10-20%, and most of them were also 

infiltrated by T-cells. Nevertheless, these results were 

met with some skepticism by the scientific community, 

mainly because undifferentiated iPSCs are not consid-

ered as a source of cells for clinical use [11].

More recent studies have been somewhat contra-

dictory, although most still indicated lack of immuno-

genicity of the syngeneic iPSCs derivatives. The oppo-

site findings were reported only in a few studies. Thus, 

additional evidence of immunogenicity of the cells 

derived from syngeneic iPSCs was presented in 2013 

by Araki et  al. [16]. The authors reported similar fre-

quency of teratoma rejection formed by both syngene-

ic iPSCs and ESCs. It was suggested that the immune 

response to teratomas is potentially related to the ex-

pression of genes regulating pluripotency. In particu-

lar, the authors relied on the previously obtained data 

that the transcription factor OCT4 may have immuno-

genic properties [17]. In addition, Araki et al., for the 

first time, found signs of immune response to the ter-

minally differentiated derivatives of syngeneic iPSCs. 

Transplantation of cardiomyocytes differentiated from 

the iPSCs led to the significant T-cell infiltration of the 

graft in the syngeneic mice [16].

Another study reported complete survival of ter-

atomas formed by the syngeneic ESCs, although some 

teratomas still showed areas of T-cell infiltration [18]. 

Furthermore, the authors compared immunogenicity 

of endothelial cells, hepatocytes, and neuron precur-

sors differentiated from the syngeneic ESCs and iPSCs. 

Differentiated iPSCs derivatives did not induce signs 

of specific T-cell response either in the in  vitro model 

or after transplantation into the syngeneic mice. Thus, 

Guha et al. [18] showed that the degree of immunoge-

nicity of iPSCs can decrease in the process of differen-

tiation. The authors of another work [19] came to the 

same conclusion. Analysis of the functional state of im-

mune cells found in the transplantation area showed 

that teratomas were infiltrated predominantly by the 

cytotoxic T-cells, while endothelial cells differentiat-

ed from iPSCs – by the regulatory T-cells and macro-

phages [19]. Another study reported complete survival 

of teratomas formed by the syngeneic ESCs, although 

some teratomas still showed areas of T-cell infiltration 

[18]. Moreover, the authors compared immunogenicity 

of endothelial cells, hepatocytes, and neuron precur-

sors differentiated from the syngeneic ESCs and iPSCs. 

Differentiated iPSCs derivatives did not induce signs of 

specific T-cell response either in the in vitro model or 

after transplantation into syngeneic mice. Thus, Guha 

et  al. [18] showed that the degree of immunogenicity 

of iPSCs can decrease in the differentiation process. 

The authors of another work [19] came to the same 

conclusion. Analysis of the functional state of immune 

cells found in the transplantation area showed that 
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teratomas were infiltrated predominantly by the cyto-

toxic T-cells, but endothelial cells differentiated from 

iPSCs – by the regulatory T-cells and macrophages [19].

Another study with the non-human primate mod-

el was published in 2013 [20]. The authors compared 

immune response to autologous and allogeneic trans-

plantation of the iPSC-differentiated midbrain dopa-

minergic neurons into Macaca fascicularis brains [20]. 

It was found that the significant amounts of microglia 

and T-cells infiltrated the allografts, while autologous 

neurons elicited minimal immune cell response. Simi-

lar work was done with the neural precursors of iPSCs, 

where no significant infiltration was observed in the 

autologous cell transplantation areas [21, 22]. Interest-

ingly, Morizane et al. detected a limited T-cell response 

to the autologous dopaminergic neurons in some ex-

perimental groups, if they were differentiated from 

the iPSCs derived by retroviral transfection [20]. How-

ever, when the iPSCs were obtained by the episomal 

reprogramming system, their derivatives did not lead 

to the immune response of autologous T-cells. These 

data indicate that viral integration of pluripotency fac-

tors during the iPSCs production may affect immuno-

genicity of the cell products.

Some limitations of the work of Morizane et al. 

[20] are worth noting. First, the authors were able to 

analyze immune response only after euthanasia of the 

animals, approximately 3-4 months after transplan-

tation. Attempts were made to track dynamics of the 

immune response using positron emission tomography 

and measuring cytokine content in blood and cerebro-

spinal fluid. However, the results were highly variable 

and correlated poorly with the postmortem histologic 

data. Additional time points could more accurately de-

termine likelihood of the immune response to trans-

plantation of autologous iPSC-derivatives. Moreover, 

although the authors demonstrated that the degree 

of immune response was higher when the allogeneic 

dopaminergic neurons were transplanted, rejection 

was not observed even without immunosuppressive 

therapy. This phenomenon could be explained by the 

brain being an immune-privileged organ. Moreover, 

these data are consistent with the clinical observations 

of long-term survival of the allogeneic dopaminergic 

neurons derived from the fetal material in the patients 

with Parkinson’s disease who received only short-term 

or no immunosuppression [23, 24].

All previous studies have described immunogenic-

ity of the animal iPSCs – mice and primates. However, 

studying immunogenicity of the autologous human 

iPSC-derivatives is essential for clinical application. 

In 2015, Zhao et al. studied this issue in a humanized 

mouse model with the reconstructed human immune 

system [13]. They found T-cell infiltration and tissue 

necrosis areas in the most teratomas formed from 

iPSCs. However, the degree of immune response to 

the autologous iPSCs was weaker than to the allogene-

ic ESCs. Therefore, the authors hypothesized that only 

certain derivatives of iPSCs could induce rejection. 

In  addition, deep sequencing of the T-cell receptor 

(TCR) repertoire of the infiltrating lymphocytes re-

vealed their oligoclonal character, pointing to the an-

tigen-specific response of T-lymphocytes to the autol-

ogous iPSCs. For allogeneic ESCs, the polyclonal TCR 

repertoire was revealed.

Furthermore, histological sections of the terato-

mas infiltrated with T-cells were analyzed to identify 

potentially immunogenic tissues. The authors found 

that the desmin-positive smooth muscle cells (SMCs) 

were significantly more frequently surrounded by 

the infiltrating T-cells. In contrast, the retinal pigment 

epithelial cells (RPE) were almost never infiltrated by 

T-cells. Next, the authors compared immunogenicity of 

the two cell types, SMCs and RPE. It turned out that the 

autologous SMCs were more immunogenic due to dys-

regulated expression of the tumor-associated genes, 

particularly HORMAD1 and ZG16. Ectopic expression 

of ZG16 in the RPE cells resulted in the significant 

T-cell response in autologous recipients.

Thus, the data on immunogenicity of syngeneic 

and autologous iPSCs derivatives against T-cells are 

contradictory. Nevertheless, most of them are encour-

aging, such as, for example, relatively recent works 

performed with the pigs [25], monkeys [26], humanized 

mice [27] models as well as in vitro studies [15, 28], where 

immune tolerance to the cellular products derived 

from iPSCs was demonstrated.

IMMUNOGENICITY OF SYNGENEIC 
AND AUTOLOGOUS iPSCs 

AND THEIR DERIVATIVES TOWARD NK-CELLS

While primary function of T-lymphocytes is to 

recognize foreign molecules, including neoepitopes, 

NK-cells have a different principle of immunological 

recognition. The classical “missing self” hypothesis 

assumes that NK-cells recognize and destroy all cells 

lacking HLA class  I molecules [29]. Based on the cur-

rent viewpoint, activation of NK-cells is a more com-

plex concept and is determined by interaction of the 

signals from two types of receptors on their surface: 

activating and inhibitory [30]. Predominance of the 

inhibitory signals upon interaction with the target cell 

does not disturb the anergy of NK-cells, while predom-

inance of the activating signals triggers their cytotoxic 

program. In turn, predominance of the activating sig-

nals can be caused by increase in the amount (level) of 

the ligands for activating NK-cell receptors on the tar-

get cells and decrease in the inhibitory ligands, mainly 

HLA class  I molecules. Such imbalance in physiologi-

cal conditions is determined by various pathological 
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processes, including oncogenesis, viral and bacterial 

infections, and stress [31].

Activity of NK-cells against undifferentiated PSCs, 

including syngeneic and autologous ones, was previ-

ously highlighted in several in  vitro studies [32,  33]. 

Generally, low expression of HLA class  I molecules is 

a characteristic feature of PSCs [34], so high activity of 

NK-cells is primarily due to the absence of inhibitory 

signals. However, some studies indirectly noted contri-

bution of the activating ligands. For example, Frenzel 

et  al. found that the preliminary blocking of activat-

ing receptor NKG2D significantly reduces cytotoxicity 

of the NK-cells co-cultured with the syngeneic mouse 

ESCs [35]. Another study showed that the NK-cells with 

knockout of the Klrk1–/– gene encoding the NKG2D re-

ceptor lysed a significantly lower percentage of the 

ESCs than the wild-type NK-cells [36]. Interestingly, 

experiments with blocking antibodies have shown a 

role for another activating receptor, DNAM-1, for hu-

man PSCs [33]. High sensitivity of PSCs to NK-cells is 

due to two factors simultaneously: low expression of 

HLA-I molecules and increased expression of activat-

ing ligands.

As for the in  vivo immune response, NK-cells are 

known to limit teratoma formation after subcutaneous 

injection of both syngeneic [37] and autologous iPSCs 

[38]. These findings suggest that the residual PSCs, 

which could potentially remain in the graft among 

the differentiated cells, would fail to form teratomas 

and would be rejected by the NK-cells. Melendez et al. 

reported that NK-cells can act as an internal barrier 

during reprogramming in  vitro and in  vivo [39]. It was 

demonstrated that NK-cells can recognize and destroy 

the partially reprogrammed cells shown to express the 

ligands for activating NKG2D and DNAM-1 receptors. 

Further, using the transgenic mouse line [40] express-

ing four reprogramming factors from the Yamanaka 

cocktail (OSKM) under doxycycline treatment, the au-

thors showed that partial reprogramming in  vivo oc-

curs more efficiently when NK-cells are depleted and, 

on the contrary, is significantly reduced when they are 

adoptively transferred [39].

Response of the syngeneic and autologous NK-cells 

to differentiated iPSC-derivatives needs to be better 

understood. For example, increased sensitivity of the 

hepatocyte-like cells differentiated from the murine 

iPSCs (iPS-HLC) to syngeneic NK-cells in  vitro has been 

reported [41]. At the same time, syngeneic somatic 

cells – hepatocytes – practically did not induce the NK-

cell response. Interestingly, this work also determined 

immune response of NK-cells to the hepatocyte-like 

cells derived from ESCs (ES-HCs). The authors found 

that the lysed ES-HCs percentage was almost twice 

as high as that of the lysed iPS-HCs. ES-HCs, but not 

iPS-HCs, appeared to have ligands for activating the 

NKG2D receptor. In addition, knockout of the NKG2D 

receptors in the NK-cells significantly reduced percent-

age of the lysed ES-HSCs but not iPS-HSCs. Thus, this 

work confirmed previous findings that elimination of 

the murine PSCs and their differentiated derivatives is 

mainly due to interaction of the NKG2D receptor with 

its ligands [35, 36, 42].

In another work, the NK-cell response to trans-

plantation of cardiomyocytes differentiated from the 

syngeneic iPSCs (miPSC-CMs) was studied in a mouse 

model [14]. It was shown that survival rate of the sub-

cutaneously transplanted miPSC-CMs was significant-

ly higher in the NK-cell-depleted mice. In the control 

mice, in addition to infiltration of the graft by NK-cells, 

there were signs of the NK-cell degranulation and re-

jection of the miPSC-CMs. Analysis of the NK-cell li-

gand expression showed that the miPSC-CMs weakly 

expressed the MHC class I molecules and were stained 

with antibodies to the ligands for NKG2D and DNAM-1 

receptors. Blocking of the NKG2D and DNAM-1 recep-

tors or increasing the MHC-I expression by the IFNγ 

(interferon gamma) pretreatment mitigated cytotoxic 

properties of the NK-cells in  vitro. Also, it decreased 

the NK-cell infiltration into the transplanted areas and 

necrosis of miPSC-CMs in  vivo.

At the same time, immunogenicity of the human 

iPSC-derivatives to NK-cells is poorly investigated. 

It was studied mainly upon engineering of the im-

mune-evasive or “universal” PSCs. This approach is 

believed to be an alternative to the traditional immu-

nosuppressive therapy, since derivatives of such cells 

will be suitable for any recipient [43,  44]. The most 

commonly used strategy to create hypoimmunogenic 

cells is to completely “turn off” expression of HLA mole-

cules, both classes  I and II. To suppress the HLA class  I 

expression, the beta-2-microglobulin (B2M) gene, which 

encodes the light subunit required for stable heterodi-

mer formation, is usually knocked out [45-47]. To sup-

press the HLA class  II expression, the CIITA gene, tran-

scription factor required for the HLA-II expression, is 

usually knocked out [48-50]. Cells devoid of HLA mol-

ecules should become completely invisible to the re-

cipient’s T-cells, both CD8+ and CD4+ [51]. On the other 

hand, elimination of the HLA class  I molecules makes 

the PSC-derivatives sensitive to cytotoxic properties 

of NK-cells [46, 52, 53]. Therefore, obtaining PSC lines 

with the reduced immunogenicity usually involves 

two steps: first, HLA expression should be suppressed, 

and then additional factors should be added to avoid 

NK-cell response [53-57].

A  priori studies of low-immunogenic iPSC-de-

rivatives were performed with an allogeneic model. 

Since NK-cells can not recognize foreign molecules, 

immune tolerance to the iPSC-derivatives can be eval-

uated using NK-cells of allogeneic origin but with one 

stipulation. It is known that the NK-cells alloreactiv-

ity can theoretically be caused by mismatch of the 
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Fig. 1. Mechanism of NK-cell alloreactivity exemplified by the ligand mismatch for KIR2DL receptors. HLA-C1/C1 NK-cells are 
activated by interaction with HLA-C2/C2 target cells (no inhibitory signal via KIR2DL3-receptor). HLA-C2/C2 NK-cells are acti-
vated by interaction with HLA-C1/C1 target cells (no inhibitory signaling through KIR2DL1 receptor). HLA-C1/C2 NK-cells are 
activated by interaction with HLA-C1/C1 target cells (no inhibitory signaling through KIR2DL1-receptor) and by interaction with 
HLA-C2/C2 target cells (no inhibitory signaling through KIR2DL3-receptor).

KIR family (killer-cell immunoglobulin-like receptor) 

ligands via the mechanism of “missing-self” recogni-

tion. All HLA-C alleles are divided into two groups  – 

HLA-C1 and HLA-C2  – depending on the sequence of 

amino acids at positions 77 and 80 of the alpha chain, 

which determines their ability to bind to the NK-cell 

receptors KIR2DL3 and KIR2DL1, respectively [58]. 

According to this principle, all donors and recipients 

can be categorized into the following groups: HLA-C1/

C1, HLA-C1/C2, and HLA-C2/C2. NK-cells, in the process 

of licensing or “learning” during maturation, acquire 

tolerance to the specific set of HLA-C alleles on their 

own cells. The conditions of NK-cell response to HLA-C 

allele mismatch by interaction with the KIR2DL recep-

tors are presented in Fig.  1. Thus, if derivatives dif-

ferentiated from the HLA-homozygous iPSC lines are 

used as target cells, heterozygous HLA-C1/C2 NK-cells 

will respond to the absence of any of the KIR-ligands. 

It was confirmed in the work by Ichise et  al. [59]. 

The  authors showed [59] that the HLA-C1/C2 NK-cells 

isolated from the blood of healthy donors lysed T-cells 

and endothelial cells differentiated from the HLA-C1/

C1 iPSCs. In turn, ectopic expression of HLA-C2 in the 

differentiated HLA-C1/C1 derivatives diminished the 

NK-cell response. In addition to alloreactivity to the 

mismatched ligands of the KIR2DL receptors, the NK-

cell responses to the absence of ligands for KIR3DL1 

(epitope Bw4) and KIR3DL2 (HLA-A3, A11 alleles) re-

ceptors have also been reported [60]. Thus, the alloge-

neic model can be used to assess immunogenicity of 

the iPSCs derivatives toward NK-cells; however, only 

under condition that the donors participating in the 

study are typed.

Interestingly, in some studies with hypoimmuno-

genic PSC-derivatives, no significant difference was 

found in the response of NK-cells to PSC knockout 

derivatives and wild-type PSC-derivatives. However, 

it should be noted that in all these studies, the target 

cells and the donors involved were not typed. Dif-

ferences in cytotoxicity and number of CD107a+, i.e., 

degranulated NK-cells cocultured with the wild-type 

SMCs or SMCs not expressing HLA class I, were statisti-

cally insignificant [55]. In turn, the wild-type RPE cells 

induced extremely high NK-cell cytotoxicity, compa-

rable to the knockout PSC-derivatives [50]. Moreover, 

percentage of the degranulated NK-cells also did not 

differ between the wild-type and knockout RPE cells, 

although it varied greatly depending on the donor. 

High cytotoxicity of NK-cells was also observed against 

the cardiomyocytes differentiated from ESCs [57]. 
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Endothelial cells induced the same level of NK-cell 

degranulation regardless of the HLA class  I expres-

sion, although NK-cell cytotoxicity was higher against 

the ESC-derivatives with the B2M gene knockout [61]. 

It should be noted that in the studies mentioned above, 

the authors did not focus on the NK-cell response to 

the wild-type PSC-derivatives. Instead, they described 

absence of hypersensitivity of the HLA-negative cells 

to the NK-cells.

In our recent work, we also found that the fibro-

blast-like iPSC-derivatives with the B2M gene knock-

out (ΔiPS-fibro) show the same degree of sensitivity 

to allogeneic and autologous NK-cells as the wild-type 

fibroblast-like cells  – iPS-fibro [15]. Unlike other au-

thors, we used parental fibroblasts as a negative con-

trol for the NK-cell reaction. This comparison enabled 

us to detect absence of complete immunologic tol-

erance to the differentiated iPSC-derivatives from 

the autologous NK-cells. Transcriptome analysis re-

vealed a significant imbalance of the NK-cell ligands 

in the iPS-  fibro. Compared to the parental fibroblasts, 

iPS- fibro simultaneously showed significant decrease 

in the expression of HLA-I molecules and increase in 

the expression of ligands for activating DNAM-1 and 

NKG2D receptors. Further in this work, it was shown 

that the NK-cell ligands in the differentiated iPSC-de-

rivatives can be balanced by pretreatment of the cell 

cultures with IFNγ [15].

Another study noted sensitivity of the renal iPSC- 

derivatives to the autologous NK-cells [28]. The au-

thors found that percentage of the activated NK-cells 

cocultured with the proximal epithelial cell precursors 

was lower than with the more “mature” iPSC-deriva-

tives. However, these differences were not discussed in 

detail in the article. According to the RNA-sequencing 

data, the level of HLA class  I transcripts increased in 

the proximal epithelial cells during prolonged cultur-

ing. These data are in agreement with the results ob-

tained with iPS-fibro [15] as well as with some activat-

ing NK-cell ligands, particularly MICA and NECTIN2. 

It explains predominance of the activating signals and 

initiation of cytotoxic program in the NK-cells. It is also 

interesting to note that, in contrast to the earlier work 

[33], Rossbach et al. [28] did not observe high activity 

of NK-cells against the undifferentiated human iPSCs.

It should be noted that the role of NK-cells in the 

solid organ transplantation remains quite controver-

sial [60,  62]. There is evidence that some subsets of 

NK-cells may play a role in regulation of allograft tol-

erance, and that NK-cells are, nevertheless, involved 

in the T-cell-mediated and antibody-mediated allograft 

rejection [63]. Without immunosuppressive therapy, 

which affects cytotoxic activity and adjusts degranu-

lation properties, the activated NK-cells produce IFNγ 

that could contribute to the development of chronic in-

flammation and enhance the predominantly T-cell-me-

diated immune response [64]. Thus, the iPSC-based cell 

therapies should also consider immunogenicity of the 

iPSC-derivatives toward NK-cells.

POSSIBLE REASONS OF THE IMMUNE RESPONSE 
TO AUTOLOGOUS IPSC DERIVATIVES

It is still unclear what the crucial factor for some-

times-observed immunogenicity of the autologous iPSC- 

derivatives is. Generally, the T-cell response can be 

explained by formation of neoantigens and aberrant 

gene expression (Fig. 2a), and the NK-cell response can 

be explained by imbalance between the activating and 

inhibitory ligands in the target cells (Fig. 2b).

It was initially assumed that using different repro-

gramming vectors could be the reason for iPSC immu-

nogenicity. Even in the first work, it was shown that 

the teratomas formed by retroviral iPSCs were more 

often rejected in the syngeneic hosts [12]. In turn, us-

ing episomes as a reprogramming vector significantly 

reduced percentage of the rejected teratomas. Similar 

results were obtained during transplantation of dopa-

minergic neurons into the primate brain [20]. It is well-

known that the retroviral and lentiviral constructs are 

predominantly integrated into the transcriptionally ac-

tive sites that could cause mutations, genome instabili-

ty, and chromosomal aberrations. In addition, there is 

evidence that the subsequent activation of transgenes 

correlates with the aberrant production of the immu-

nogenic protein OCT4 [17].

It is assumed that immunogenicity of the “inte-

gration-free” iPSCs should be lower than of the iPSCs 

obtained by retro- and lentiviral transfection. However, 

to the best of our knowledge, there are no detailed 

studies on this topic. The data comparing genomic in-

stability in the iPSC lines obtained by various repro-

gramming methods are contradictory. Thus, some re-

searchers report a similar number of point mutations 

[65], as well as copy number variations (CNVs) [66]. 

On  the contrary, others showed 2-fold lower number 

of mutations in the integration-free” iPSCs [67, 68], 

which means lower probability of neoepitope forma-

tion. The frequency of genetic variations was also low 

in the human iPSCs obtained with episomal constructs 

[69]. In the recent years, other methods of reprogram-

ming without integration have been suggested, partic-

ularly involving endogenous pluripotent genes using 

the CRISPR/Cas9 system [70]. However, as far as we 

know, no additional information about their genomic 

instability has been provided. In any case, non-integra-

tive reprogramming methods are currently the safest 

and most effective for further clinical use [4].

Commonly, differences in immunogenicity are ex-

plained by mutations and, consequently, by formation 

of neoepitopes [71]. First, these may be mutations that 
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Fig. 2. Immunogenicity of autologous iPSCs and their derivatives. a) Immune response of T-cells to autologous iPSCs and their 
differentiated derivatives could be due to recognition of immunogenic neoepitopes formed as a result of mutations or aberrant 
expression of immunogenic genes. b)  Immune response of NK-cells to autologous iPSCs and their differentiated derivatives 
could be due to imbalance of the NK-cell ligands in the target cells. Predominance of activating signals triggers cytotoxic pro-
gram in NK-cells.

existed in the parental somatic cells. Thus, fibroblasts 

are one of the most frequently used sources of cells 

for reprogramming [72]. It has been reported that mu-

tations acquired due to UV-induced mutagenesis are 

present in ~50% of human iPSCs reprogrammed from 

the skin fibroblasts [73]. Such mutations are charac-

terized by the C-to-T or CC-to-TT substitutions and are 

often observed in melanomas [74]. Other somatic cells 

can act as an alternative to fibroblasts. For example, it 

has been reported that the iPSCs obtained from hema-

topoietic stem cells contain significantly fewer point 

mutations, insertions, and deletions than the iPSCs 

obtained from the skin fibroblasts  [75]. Peripheral 

blood cells are also very often used as a source of cells 

for reprogramming. Rouhani et  al. revealed that the 

blood-derived iPSCs contained fewer mutations than 

the fibroblast-derived iPSCs  [76]. At the same time, 

there is evidence that mutations in the blood cells 

also accumulate with age [77]. Thus, the work using 16 

iPSC lines obtained from the blood cells of donors aged 

21-100 years demonstrated that the frequency of muta-

tions in the iPSC increases linearly with the donor age 

[78]. In addition, frequency of the mitochondrial DNA 

mutations in human iPSCs also increases with the do-

nor age, and this can lead to metabolic defects in iPSCs 

[79]. Although de novo mutations in the mitochondrial 

DNA are usually rare for iPSCs [80,  81], they can lead 

to formation of immunogenic neoepitopes and pro-

voke immune response even during the autologous 

transplantation, as was shown earlier [82].

Thus, somatic cells of the young donors may have 

a comparative advantage for deriving iPSCs. This is 

also confirmed by the results of recent work, where 

iPSCs were obtained from the umbilical cord blood 

erythroblasts and did not contain mutations in the 

protein-coding regions [83]. In addition, age of the do-

nors could affect cultural properties of iPSCs. Thus, 

it was shown that the iPSCs obtained from the older 

mice proliferated not as good as the iPSCs obtained 

from the young mice [84].

Mutations in iPSCs could also occur during re-

programming. Such mutations are usually similar to 

the mutations caused by oxidative stress (C-to-A sub-

stitutions) and are predominantly found in the lami-

na-associated domains  – condensed regions of heter-

ochromatin positioned at the nuclear periphery [85]. 
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Earlier studies showed that up to 75% of point muta-

tions in iPSCs occur during reprogramming [86,  87]. 

Presence of various mutations in the isogenic iPSC 

clones and lower frequency of point mutations in the 

isogenic ESC presumably indicates that such mutations 

were not obtained from the parental somatic cells [67]. 

Additional information on the mutations that occur 

during reprogramming was provided by Rouhani et al. 

[88]. The authors identified unique mutations in the 

isogenic iPSC lines derived from the monoclonal-origin 

endothelial precursors.

It is believed that mutations occur at the earliest 

stages of reprogramming before the first cell division 

after the introduction of reprogramming factors or 

immediately after the first or second division [67,  83]. 

The authors of the latest work also found that tempo-

rary deficit of the control components of the G1/S cell 

cycle at the initial stage of the reprogramming process 

leads to accumulation of mutations [83]. At the same 

time, the data on mutations that occur during repro-

gramming are pretty ambiguous. Recent studies have 

shown that up to 90% of the various SNPs and indels in 

iPSCs originate from somatic cells [73,  89]. Moreover, 

Kosanke et  al. showed that only 2% of the mutations 

detected in iPSCs were not detected in the parental en-

dothelial cells used for reprogramming [90].

The third reason for mutations in iPSCs is long-

term cultivation. Such mutations are formed stochasti-

cally and are much less common than the pre-existing 

somatic mutations or reprogramming-induced muta-

tions. Mutations caused by prolonged cultivation are 

believed to provide proliferative benefits [91,  92]. For 

example, one iPSCs line carried four additional point 

mutations in the late passages compared with the cells 

of early passages [86]. Nevertheless, according to the 

recent data, frequency and spectrum of the mutations 

induced by long-term cultivation of iPSCs do not differ 

from the mutations occurring at the pre-gastrulation 

stage of embryogenesis [93]. Another study showed 

that the rate of accumulated mutations in the long-

term cultured iPSCs is lower than in the intestinal and 

liver stem cells [94]. The authors found that more than 

a third of mutations were caused by the C-to-A substi-

tutions associated with oxidative stress. Cell cultiva-

tion under hypoxic conditions (3% oxygen) for three 

months significantly reduced the number of single 

nucleotide substitutions. Similar results were obtained 

for the ESCs: the authors observed a more than two-

fold decrease in the frequency of mutations under hy-

poxia [95]. The obtained data can be used to optimize 

conditions of IPSC cultivation.

For clinical use, it is crucial to understand how 

mutations can affect the iPSC phenotype, including 

whether they can trigger carcinogenesis. There are 

studies indicating that point mutations are predom-

inantly found in the cancer-associated genes [86]. 

Repeated mutations in the TP53 tumor suppressor 

gene were detected both by the whole exome sequenc-

ing of ESC and by analyzing the publicly available RNA 

sequencing data from 120 PSC lines [92]. In addition to 

mutations in the TP53 gene, repeated mutations were 

found in other tumor-associated genes, such as CDK12, 

EGFR, and PATZ1 [96,  97]. A recent study revealed mu-

tations in the BCOR gene, often found in hematological 

diseases, in more than 25% of the analyzed iPSC lines 

[76]. In contrast, no association with the tumor-associ-

ated genes has been found in other studies [65, 69, 73, 

94]. Point mutations were mostly found in the areas 

of inactive chromatin, so they were unlikely to cause 

undesirable effects. However, unique mutations in var-

ious isogenic iPSC clones were usually found in active 

promoters and could alter gene expression [73]. This, 

in turn, could lead to formation of immunogenic deter-

minants or affect effectiveness of differentiation into 

the desired cell type [98], which is also essential for re-

generative medicine.

In addition to mutations induced by reprogram-

ming or cultivation, epigenetic changes that regulate 

expression of various proteins should also be consid-

ered. First of all, it applies to disruption in DNA meth-

ylation in the PSC lines. Some studies noted that ab-

errant methylation pattern in iPSCs may be similar to 

the tumor cells [99-101]. Moreover, it was shown that 

methylation deregulation can persist in differentiated 

cells [102]. However, it is worth noting that DNA meth-

ylation in the PSCs can be dynamic, respond to culture 

conditions, and vary depending on the cell line [95].

It is also believed that some cells are not fully 

undergoing the reprogramming process, and iPSCs 

could to a large extent retain transcriptional and epi-

genetic memory of their origin [103]. Nevertheless, re-

sults of the studies on this topic are quite contradictory, 

but according to the modern concepts, molecular and 

functional differences in different iPSC lines are lost 

during prolonged cultivation [104]. At the same time, 

it was shown in the recent study that reprogramming 

through the stage of naive iPSCs (TNT-reprogramming) 

completely erases epigenetic memory and corrects 

epigenetic aberrations that have arisen [105]. Such 

TNT-iPSCs turned out to be more similar to ESCs from 

the molecular and functional point of view than the 

iPSCs obtained by the standard method.

Epigenetic peculiarities could explain abnormal 

expression of immunogenic proteins. Thus, at least two 

studies have demonstrated that the “somatic memory” 

phenomenon could influence immunogenicity of the 

iPSCs [106,  107]. Mouse iPSCs obtained from the Sertoli 

cells, anatomically related to the immune-privileged 

regions, formed teratomas more efficiently than the 

iPSCs obtained from the embryonic fibroblasts [106]. 

Moreover, differentiated derivatives of the syngene-

ic ESCs demonstrated a reduced in  vitro activation 
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of allogeneic T-cells compared to the iPSCs obtained 

from the embryonic fibroblasts. However, it is worth 

noting that in the later passages, the authors did not 

observe differences in immunogenicity of the iPSCs 

obtained from different somatic cells. These results 

confirm that “somatic memory” in the iPSCs may be 

present only in early passages [106]. Another study 

showed that the umbilical cord mesenchymal cells are 

a less immunogenic source of cells for reprogramming 

than the skin fibroblasts [107].

Impaired expression of the genes associated with 

the NK-cell response is another reason for immunoge-

nicity of iPSCs and their derivatives [15]. Both increase 

in the signals from activating receptors and decrease 

in the signals from inhibitory receptors can trigger 

cytotoxic program of NK-cells. In other words, proper 

balance between the inhibitory and activating ligands 

could make the target cell invisible to NK-cells [108]. 

In contrast, an impaired balance of the NK-cell ligands 

in the iPSC-derivatives could cause excessive activa-

tion of NK-cells. Thus, intensity of the HLA class  I mol-

ecule expression and activating ligands and adhesion 

molecules would influence the degree of immune re-

sponse. Previously, we showed that all these factors 

were responsible for the increased NK-cell response 

to iPSC-derivatives [15]. First, we observed a relatively 

low gene expression of the HLA-I molecules, major in-

hibitory ligands in the fibroblast-like iPSC-derivatives 

(iPS-fibro). Second, the genes coding for the main ac-

tivating NK-cell ligands were upregulated in the iPS- 

fibro. Expression of the stress-induced molecule MICA 

(NKG2D ligand) gene was more than 1.5 times higher 

in the iPS-fibro than in their parental fibroblasts. The 

DNAM-1 ligands, NECTIN2 (CD112) and PVR (CD155), 

and the NKp30 ligand, NCR3LG1 (B7-H6), underwent 

a more noticeable increase in the gene expression 

with more than 3-fold-change in the iPS-fibro. Third, 

the genes of some adhesion molecules were also over-

expressed in iPS-fibro. Interaction of the adhesion 

molecules with their receptors on NK-cells facilitates 

formation of tight junctions between the NK-cell and 

the target cell and leads to assembly of immunologi-

cal synapses essential for the target cell killing [109]. 

The ICAM-1 (LFA-1 ligand) and VCAM-1 (VLA-4 or α4β1 

integrin ligand) genes were upregulated in the iPSC- 

derivatives. Hence, imbalance between the NK-cell 

ligands in iPSC-derivatives was determined simultane-

ously by low intensity of the inhibitory signals and ele-

vated intensity of the activating signals [15].

Vulnerability to the action of NK-cells can be ex-

plained by insufficient maturity of the differentiated 

iPSC-derivatives and low level of the HLA-I class mol-

ecules compared to the parental somatic cells. Thus, 

increase in the HLA-I expression was shown during 

prolonged cultivation or passaging, at least for the RPE 

cells [50], proximal renal epithelium cells [28], and 

iPS-fibro [15]. Another risk of immature phenotype is 

expression of embryonic or fetal proteins, which are 

also typical for some cancers (for example, alpha-fe-

toprotein) [110]. Despite the active development of 

differentiation protocols, several cell types can be dif-

ferentiated in  vitro only to an immature phenotype, in 

particular, cardiomyocytes [111], hepatocytes [112], or 

beta-cells [113].

Increased expression of the activating NK-cell li-

gands is worth noting separately. Analysis of the pub-

licly available RNA-seq datasets [114-116] showed that 

expression of the NECTIN2, PVR, CADM1, and CD70 

genes was upregulated in the independently derived 

fibroblast-like cells compared to the isogenic fibro-

blasts used for reprogramming [15]. Imperfect micro-

environment during in  vitro differentiation may affect 

proper balance between the ligands for the NK-cell 

receptors in this type of iPSC-derivatives. In addition, 

high levels of the MICA and NECTIN2 gene expression 

were observed in the proximal epithelial cells of the 

kidney [28]. Since each cell type expresses its own set 

of proteins, it will be necessary to determine expres-

sion pattern of the ligands of the NK-cell receptors for 

clinical use. It is worth noting that the cells that belong 

to immune-privileged tissues could have immunomod-

ulatory functions to suppress immune response. It was 

shown that some types of the differentiated PSC-deriv-

atives, in particular RPE cells [117,  118], retinal gan-

glion cells [119], neuron precursors [120-122], neural 

crest cells [123,  124], and chondrocytes [125] demon-

strate reduced immunogenicity even to allogeneic lym-

phocytes.

Different cultivation conditions could affect im-

munogenicity of iPSCs and their derivatives. As men-

tioned earlier, prolonged cultivation could lead to ac-

cumulation of mutations in the cells at later passages 

[86,  94]. The cryo-pause method, i.e., storing iPSCs as 

ready-to-use aliquots from one passage, can reduce 

frequency of genomic aberrations caused by passaging 

and prolonged cultivation of iPSCs [126]. Considering 

that oxidative process during reprogramming and pro-

longed cultivation could lead to C-to-A substitutions 

[85, 88, 94], antioxidants could reduce mutagenic load 

in the iPSCs. In particular, antioxidants were report-

ed to reduce CNVs in the iPSCs [127]. A recent study 

also indicated that introduction of antioxidant trans-

genes, such as superoxide dismutase  1 (SOD1) and 2 

(SOD2), glutathione peroxidase  1 (GPX1), and N-acetyl-

cysteine (NAC), reduced the number of transversions 

in iPSCs [83].

Selection of the reagents used for cultivation and 

differentiation could affect immunogenic properties 

of iPSCs and their derivatives. Using xenogeneic 

materials for PSC cultivation could complicate fur-

ther clinical use of the PSC-derivatives. For example, 

ESCs and embryoid bodies were shown to absorb 
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Fig. 3. Potential reasons of impaired immune tolerance to the autologous iPSCs and their differentiated derivatives.

N-  glycolylneuraminic acid (Neu5Gc) from the feeder 

layers of embryonic fibroblasts and from nutrient me-

dia containing animal serum [128]. This poses a sig-

nificant risk since antibodies to Neu5Gc circulate in 

human blood [129]. Currently, PSCs are usually culti-

vated under feeder-free conditions. In addition, repro-

gramming and differentiation protocols have been de-

veloped without using animal components (xeno-free), 

in which the amount of Neu5Gc is reduced or it is 

completely absent. However, these methods are more 

expensive [130,  131]. On the other hand, commer-

cial xeno-free media may contain elevated levels of 

ascorbate, which could affect methylation of the CD30 

promoter, a marker of malignant neoplasms [132]. 

However, it is worth noting that CD30 more likely is 

the marker of undifferentiated cells than the marker 

of transformed cells [133]. In any case, the risk is not 

limited to animal products. For new formulations of 

nutrient media, it is necessary to determine their bio-

logical effects on the cultured cells, including balance 

of the NK-cell ligands.

Hence, several factors could potentially affect 

immunogenicity of the final cellular product obtained 

from PSCs (Fig.  3). Systematization of the possible rea-

sons listed above should contribute to the develop-

ment of quality criteria to ensure safety of the PSC-

based therapy in clinical practice. Since each type of 

the differentiated cells expresses different genes and 

proteins, we assume that screening of each cell type 

for immunogenicity would be necessary for subse-

quent clinical use [134].

CONCLUSION

Accumulating data on the lack of complete im-

mune tolerance to derivatives of autologous iPSCs [13-

15] raises concerns about their transplantation without 

immunosuppression. Nevertheless, the most eloquent 

response to these concerns are the results of ongoing 

clinical trials. According to the https://clinicaltrials.gov, 

about 20 cell products based on autologous iPSCs are 
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undergoing clinical trials. Primary results of the three 

of them have been published [135-137]. In the first two 

cases, RPE cells were transplanted to treat age-relat-

ed macular degeneration; in the third, dopaminergic 

progenitor cells were transplanted to treat Parkinson’s 

disease. Immunosuppressive therapy was not used in 

any transplantation, but no side effects were report-

ed. It should be noted that in all cases transplantation 

of homogeneous cultures of the iPSC-derivatives was 

carried out into the immune-privileged organs  – eye 

and brain. It remains to be studied whether the unde-

sirable immune reactions would occur during trans-

plantation of autologous iPSC-derivatives, including 

complex cellular products, into the organs and tissues 

deprived of immune-privileged status. More recently, 

there has been a report on the absence of side effects 

in the case of transfusion of the platelets differentiated 

from autologous iPSCs [138].

Impaired immune tolerance and high cost and 

time necessary for deriving a new iPSC line currently 

do not allow us to consider personalized therapy as a 

promising tool for broad medical practice. In this re-

gard, allogeneic derivatives of PSCs are currently the 

preferred source for regenerative medicine. In the 

recent years, it was suggested that derivation of the 

“universal” PSCs could solve the problem of histocom-

patibility and prevent immune rejection since their de-

rivatives would be suitable for any recipient [43, 44, 

51]. As mentioned earlier, various “immune masking” 

strategies are used to obtain such iPSCs, from elimi-

nation of the HLA molecules to inhibit T-lymphocytes 

[45-50] to introduction of the immunomodulatory fac-

tors to suppress NK-cells [53-57]. It was shown that the 

differentiated derivatives of the modified iPSCs with 

reduced immunogenicity demonstrate long-term sur-

vival in the fully immunocompetent animals: 50 days 

in the mouse model [56] and 40 weeks in rhesus mon-

keys [139]. In both studies, “blinding” of the allogeneic 

immune system was achieved by blocking expression 

of the HLA class I and II by knocking out the B2M and 

CIITA genes and introducing the CD47 transgene as 

an immune checkpoint to NK-cells [140]. In the recent 

study, simultaneous introduction of 8 immunomodula-

tory factors (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, 

Ccl21, and Mfge8) to the mouse ESC ensured long-term 

survival of teratomas in the allogeneic model [141]. 

In some groups of animals, the observation period was 

nine months. In February 2022, ViaCyte and CRISPR 

Therapeutics announced launch of the Phase I trials of 

VCTX210, ESC-based therapy for type  1 diabetes with-

out the need for immunosuppression. The used CyT49 

line has a B2M gene knockout and expresses the CD274 

transgene encoding immunological checkpoint PD-L1 

for additional protection against the T-cell attack [142].

Despite attractiveness of the “universal” approach, 

the problems associated with safety of such therapy 

are worth noting [43, 143, 144]. First, they relate to 

immune evasion, which means increase in the risks 

of tumor transformation of such cells. By itself, ab-

sence of the MHC/HLA molecules should not contrib-

ute to oncogenesis [145]. Therefore, the probability 

of malignant degeneration is unlikely to exceed that 

in the adult tissues. However, it is evident that in the 

HLA-negative cells, it would be more challenging to 

eliminate it using conventional immune mechanisms. 

It was proposed to solve this problem by introduc-

ing “suicide cassettes” that can be activated in the 

case of malignant transformation or viral infection 

of the graft [43,  51]. The herpes simplex virus 1 thy-

midine kinase (HSV-TK) gene can be introduced under 

the promoter of both pluripotent genes [146] and the 

genes that play a key role in regulation of the cell cy-

cle, such as the CDK1 gene [147]. The latter approach 

has recently been applied to the immunomodified hu-

man ESCs [141]. Another approach is a suicidal system 

based on the inducible caspase-9 (iCas9) [148]. Taking 

into account this issue, the current Viacyte clinical tri-

al is safer since a semipermeable membrane encap-

sulates beta-cells and cannot exit the capsule in the 

case of degeneration [149]. In any case, it is evident 

that for safety reasons it is necessary to thoroughly 

investigate “universal” lines for potential oncogenic 

mutations and activating proto-oncogenes [51]. Still, 

despite the unresolved issues, development of the ge-

netically modified pluripotent stem cells can contrib-

ute to the large-scale production of the “off-the-shelf” 

cell products and solve the problem of tissue and 

organ shortage.
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